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Abstract: We discuss a feature of the natural language of mathematics – the implicit dynamic introduction of functions – that
has, to our knowledge, not been captured in any formal system so far. If this feature is used without limitations, it yields a
paradox analogous to Russell’s paradox. Hence any formalism capturing it has to impose some limitations on it. We sketch
two formalisms, both extensions of Dynamic Predicate Logic, that innovatively do capture this feature, and that differ only in
the limitations they impose onto it. One of these systems is based on a novel theory of functions that interprets ZFC, and thus
exhibits interesting connections to the foundations of mathematics.
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1. Dynamic Predicate Logic
Dynamic Predicate Logic (DPL, Groenendijk & Stokhof, 1991) is a formalism whose syntax
is identical to that of standard first-order predicate logic (PL), but whose semantics is defined
in such a way that the dynamic nature of natural language quantification is captured in the
formalism:

1. If a farmer owns a donkey, he beats it.

2. PL: ∀x∀y (farmer(x) ∧ donkey(y) ∧ owns(x, y)→ beats(x, y))

3. DPL: ∃x (farmer(x) ∧ ∃y (donkey(y) ∧ owns(x, y)))→ beats(x, y)

In PL, 3 is not a sentence, since the rightmost occurences of x and y are free. In DPL, a variable
may be bound by a quantifier even if it is outside its scope. The semantics is defined in such a
way that 3 is equivalent to 2. So in DPL, 3 captures the meaning of 1 while being more faithful
to its syntax than 2.

1.1. DPL semantics
We present DPL semantics in a way slightly different but logically equivalent to its definition in
Groenendijk and Stokhof (1991). Structures and assignments are defined as for PL: A structure
S specifies a domain |S| and an interpretation aS for every constant, function or relation symbol
a in the language. An S-assignment is a function from variables to |S|. GS is the set of S-
assignments. Given two assignments g, h, we define g[x]h to mean that g differs from h at most
in what it assigns to the variable x. Given a DPL term t, we recursively define

[t]gS =


g(t) if t is a variable,
tS if t is a constant symbol,
fS([t1]

g
S, . . . , [tn]

g
S) if t is of the form f(t1, . . . , tn).

Groenendijk and Stokhof (1991) define an interpretation function J•KS from DPL formulae to
subsets of GS ×GS . We instead recursively define for every g ∈ GS an interpretation function
J•KgS from DPL formulae to subsets of GS:1

1This can be viewed as a different currying of the uncurried version of Groenendijk and Stokhof’s interpretation function.



1. J>KgS := {g}

2. Jt1 = t2KgS := {h|h = g and [t1]
g
S = [t2]

g
S}2

3. JR(t1, . . . , t2)KgS := {h|h = g and ([t1]
g
S, . . . , [t2]

g
S) ∈ RS}

4. J¬ϕKgS := {h|h = g and there is no k ∈ JϕKhS}

5. Jϕ ∧ ψKgS := {h|there is a k s.t. k ∈ JϕKgS and h ∈ JψKkS}

6. Jϕ→ ψKgS := {h|h = g and for all k s.t. k ∈ JϕKhS , there is a j s.t. j ∈ JψKkS}

7. J∃xϕKgS := {h|there is a k s.t. k[x]g and h ∈ JϕKkS}

ϕ ∨ ψ and ∀xϕ are defined to be a shorthand for ¬(¬ϕ ∧ ¬ψ) and ∃x> → ϕ respectively.

2. Implicit dynamic introduction of function symbols
Functions are often dynamically introduced in an implicit way in mathematical texts. For ex-
ample, Trench (2003) introduces the additive inverse function on the reals as follows:

(1) For each a there is a real number −a such that a+ (−a) = 0.

Here the natural language quantification “there is a real number −a” locally (i.e. inside the
scope of “For each a”) introduces a new real number to the discourse. But since the choice of
this real number depends on a and we are universally quantifying over a, it globally (i.e. outside
the scope of “For each a”) introduces a function “−” to the discourse.

The most common form of implicitly introduced functions are functions whose argument is
written as a subscript, as in the following example:

(2) Since f is continuous at t, there is an open interval It containing t such that |f(x)−f(t)| <
1 if x ∈ It ∩ [a, b]. (Trench, 2003)

If one wants to later explicitly call the implicitly introduced function a function, the standard
notation with a bracketed argument is prefered:

(3) Suppose that, for each vertex v of K, there is a vertex g(v) of L such that f(stK(v)) ⊂
stL(g(v)). Then g is a simplicial map V (K)→ V (L), and |g| w f . (Lackenby, 2008)

When no uniqueness claims are made about the object locally introduced to the discourse,
implicit function introduction presupposes the existence of a choice function, i.e. presupposes
the Axiom of Choice. We hypothesise that the naturalness of such implicit function introduction
in mathematical texts contributes to the wide-spread feeling that the Axiom of Choice must be
true.

Implicitly introduced functions generally have a restricted domain and are not defined on the
whole universe of the discourse. For example in (3), g is only defined on vertices of K and not
on vertices of L. Implicit function introduction can also be used to introduce multi-argument
functions, but for the sake of simplicity and brevity, we restrict ourselves to unary functions in
this paper.

If the implicit introduction of functions is allowed without limitations, one can derive a con-
tradiction:

2The condition h = g in cases 2, 3, 4 and 6 implies that the defined set is either ∅ or {g}.



(4) For every function f , there is a natural number g(f) such that

g(f) =

{
0 if f ∈ dom(f) and f(f) 6= 0,
1 if f 6∈ dom(f) or f(f) = 0.

Then g is defined on every function, i.e. g(g) is defined. But from the definition of g,
g(g) = 0 iff g(g) 6= 0.

This contradiction is due to the unrestricted function comprehension that is implicitly assumed
when allowing implicit introductions of functions without limitations. Unrestricted function
comprehension could be formalised as an axiom schema as follows:

Unrestricted function comprehension
For every formula ϕ(x, y), the following is an axiom:

∀x ∃y ϕ(x, y)→ ∃f ∀x ϕ(x, f(x))

The inconsistency of unrestricted function comprehension is analogous to the inconsistency of
unrestricted set comprehension, i.e. Russell’s paradox.

Russell’s paradox led to the abandonment of unrestricted comprehension in set theory. Two
radically different approaches have been undertaken for restricting set comprehension: Russell
himself restricted it through his Ramified Theory of Types, which was later simplified to Sim-
ple Type Theory (STT), mainly known via Church’s formalisation in his simply typed lambda
calculus (Church, 1940). On the other hand, the risk of paradoxes like Russell’s paradox also
contributed to the development of ZFC (Zermel-Fraenkel set theory with the Axiom of Choice),
which allows for a much richer set theoretic universe than the universe of simply typed sets.
Since all the axioms of ZFC apart from the Axiom of Extensionality, the Axiom of Founda-
tion and the Axiom of Choice are special cases of comprehension, one can view ZFC as an
alternative way to restrict set comprehension.

Similarly, the above paradox must lead to the abandonment of unrestricted function compre-
hension. The type-theoretic approach is easily adapted to functions, so we will first sketch the
system that formalises this approach, Typed Higher-Order Dynamic Predicate Logic. For an
untyped approach, there is no clear way to transfer the limitations that ZFC puts onto set com-
prehension to the case of function comprehension. However, there is an axiomatization of set
theory called Ackermann set theory that is a conservative extension of ZFC. It turns out that the
limitations that Ackermann set theory poses on set comprehension can be transfered to the case
of function comprehension, and hence to the case of implicit dynamic function introduction.

The need to deal with implicit function introduction arose for us in the context of the Naproche
project, a project aiming at automatic formalisation of natural language mathematics (Cramer,
Fisseni, et al., 2010). It has been implemented in the Naproche system using type restrictions
as in Typed Higher-Order Dynamic Predicate Logic, and we plan to implement it using the less
strict restrictions of the untyped Higher-Order Dynamic Predicate Logic in a future version of
the system.

3. Typed Higher-Order Dynamic Predicate Logic
In this section, we extend DPL to a system called Typed Higher-Order Dynamic Predicate
Logic (THODPL), which formalises implicit dynamic function introduction, and also allows
for explicit quantification over functions. THODPL has variables typed by the types of STT.
In the below examples we use x and y as variables of the basic type i, and f as a variable of



the function type i → i. A complex term is built by well-typed application of a function-type
variable to an already built term, e.g. f(x) or f(f(x)).

The distinctive feature of THODPL syntax is that it allows not only variables but any well-
formed terms to come after quantifiers. So (5) is a well-formed formula:

(5) ∀x ∃f(x) R(x, f(x))

(6) ∀x ∃y R(x, y)

(7) ∃f (∀x R(x, f(x)))

The semantics of THODPL is to be defined in such a way that (5) has the same truth condi-
tions as (6). But unlike (6), (5) dynamically introduces the function symbol f to the context,
and hence turns out to be equivalent to (7).

We now sketch how these desired properties of the semantics can be achieved. In THODPL
semantics, an assignment assigns elements of |S| to variables of type i, functions from |S| to |S|
to variables of type i→ i etc. Additionally, an assignment can also assign an object (or function)
to a complex term. For example, any assignment in the interpretation of ∃f(x) R(x, f(x)) has
to assign some object to f(x). The definition of g[x]h can now naturally be extended to a
definition of g[t]h for terms t. The definition of [t]gS has to be adapted in the natural way to
account for function variables.

Just as in the case of DPL semantics, we recursively define an interpretation J•KgS from DPL
formulae to subsets of GS (the cases 1-5 of the recursive definition are as before):

6. Jϕ→ ψKgS := {h|h differs from g in at most some function variables f1, . . . , fn (where this
choice of function variables is maximal), and there is a variable x such that for all k ∈ JϕKgS ,
there is an assignment j ∈ JψKkS such that j(fi(x)) = h(fi)(k(x)) for 1 ≤ i ≤ n, and if
n > 0 then k[x]g }

7. J∃tϕKgS := {h|there is a k s.t. k[t]g and h ∈ JϕKkS}

In order to make case 6 of the definition more comprehensible, let us consider its role in
determining the semantics of (5), i.e. of ∃x> → ∃f(x) R(x, f(x)): J∃f(x) R(x, f(x))KkS is
the set of assignments j satisfying R(x, f(x)) (i.e. for which JR(x, f(x))KjS is non-empty) such
that j[f(x)]k . J∃x>KgS is the set of assignments k such that k[x]g. So by case 6 with n = 1,

J∃x> → ∃f(x) R(x, f(x))KgS = {h|h[f ]g and there is a variable x such that for all k such that
k[x]g, there is an assignment j satisfying R(x, f(x)) such that
j[f(x)]k and j(f(x)) = h(f)(k(x)), and k[x]g}

= {h|h[f ]g and for all k such that k[x]g, there is an assign-
ment j satisfying R(x, f(x)) such that j[f(x)]k and j(f(x)) =
h(f)(k(x))}

= {h|h[f ]g and for all k such that k[x]h, k satisfies R(x, f(x))}
= J∃f (∀x R(x, f(x)))KgS

The type restrictions THODPL imposes may be too strict for some applications: Mathemati-
cians sometimes do make use of functions that do not fit into the corset of strict typing, e.g. a
function defined on both real numbers and real functions. To overcome this restriction, we will
introduce an untyped variant HODPL in section 6. But for this we require some foundational
preliminaries.



4. Ackermann set theory
Ackermann set theory (Ackermann, 1956) postulates not only sets, but also proper classes which
are not sets. The sets are distinguished from the proper classes by a unary predicate M (from
the German word ”‘Menge”’ for ”‘set”’).

Ackermann presented a pure version of his theory without urelements, and a separate version
with urelements, which we will present here. The language of Ackermann set theory contains
three predicates: A binary predicate ∈, a unary predicate M and a unary predicate U for urele-
ments. We introduce L(x) (“x is limited”) as an abbreviation for M(x)∨U(x). The idea is that
sets and urelements are objects of limited size, and are distinguished from the more problematic
classes of unlimited size.

The axioms of Ackermann set theory with urelements are as follows:

• Extensionality axiom: ∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x = y)

• Class comprehension axiom schema: Given a formula F (y) (possibly with parameters)
that does not have x among its free variables, the following is an axiom:
∀y(F (y)→ L(y))→ ∃x∀y(y ∈ x↔ F (y))

• Set comprehension axiom schema: Given a formula F (y) (possibly with parameters that
are limited) that does not have x among its free variables and does not contain the symbol
M , the following is an axiom:
∀y(F (y)→ L(y))→ ∃x(M(x) ∧ ∀y(y ∈ x↔ F (y)))

• Elements and subsets of sets are limited:
∀x∀y(M(y) ∧ (x ∈ y ∨ ∀z(z ∈ x→ z ∈ y))→ L(y))

So unlimited set comprehension is replaced by two separate comprehension schemata, one
for class comprehension and one for set comprehension. In both cases, the comprehension is
restricted by the constraint that only limited objects satisfy the property that we are applying
comprehension to. But for set comprehension, we have the additional constraint that the prop-
erty may not be defined using the setness predicate or using a proper class as parameter. Acker-
mann justified this approach by appeal to a definition of “set” from Cantor’s work (Ackermann,
1956).

If an Axiom of Foundation for sets is added, Ackermann set theory turns out to be – in what
it says about sets – precisely equivalent to ZF (Reinhardt, 1970). But this equivalence is not a
triviality: It is especially hard to establish Replacement for the sets of Ackermann set theory.

5. Ackermann-like function theory
Now we transfer the ideas of a comprehension limited in this way from set comprehension to
function comprehension. For this a dichotomy similar to that between sets and classes has to be
imposed on functions. We propose the terms function and map respectively for this dichotomy,
and call the theory resulting from these limitations on function comprehension Ackermann-like
Function Theory (AFT). AFT can be shown to be equiconsistent with Ackermann set theory
and hence with ZFC.

The language of Ackermann-like function theory contains

• a unary predicate F for functions,

• a unary predicate U for urelements,



• a constant symbol u for undefinedness, and

• a binary function symbol a for function application.

Instead of a(f, t) we usually simply write f(t). We write L(x) instead of U(x) ∨ F (x). The
undefinedness constant u is needed for formalising the idea that a function is only defined for
certain values and undefined for others. In this language, the unrestricted function comprehen-
sion schema would be as follows:

Given a variable z and formulae P (z) and R(z, x) (possibly with parameters), the
following is an axiom: ∀z (P (z) → ∃x R(z, x)) → ∃f (¬U(f) ∧ ∀z ((P (z) →
R(z, f(z))) ∧ (¬P (z)→ f(z) = u)))

Analogously to the case of Ackermann set theory, AFT has separate comprehension schemata
for maps and functions. The restriction that is imposed on both schemata now is ∀z ∀x (R(z, x)
→ L(z) ∧ L(x)). In the function comprehension schema, in which F (f) appears among the
conclusions we may draw about f , the additional restriction is that the formula R(z, x) may not
contain the symbol F and may not have unlimited objects as parameters.

Additionally to these comprehension schemata, AFT has

• a function extensionality axiom,

• an axiom stating that any value a function takes and any value a function is defined at is
limited, and

• an axiom stating that submaps of functions are functions.

In AFT one can interpret Ackermann set theory with Foundation, and hence ZFC. Since the
map and function comprehension schemata presuppose the existence of choice maps and choice
functions, the Axiom of Choice naturally comes out true in these interpretations.

6. Higher-order dynamic predicate logic
Now we are ready to sketch the untyped Higher-Order Dynamic Predicate Logic (HODPL). The
restriction we impose on implicit function introduction are those imposed by AFT. AFT gives us
untyped maps, which always have a restricted domain. So instead of using types to syntactically
restrict the possible arguments for a given function term, we implement a semantic restriction
on function application by integrating a formal account of presuppositions into the HODPL.3

HODPL syntax thus allows for any term to be applied to any number of arguments to form a
new term.

Besides the binary “=”, HODPL has two unary logical relation symbols, U for urelements
and F for functions. HODPL syntax does not depend on a signature, as we do not allow for
constant, function and relation symbols other than “=”, U and F . These can be mimicked by
variables that respectively denote a non-function, denote a normal function or denote a function
that only takes two predesignated urelements (“booleans”) as values.

The domain of a structure always has to be a model of AFT. The possibility of presupposition
failure is implemented in HODPL semantics by making the interpretation function partial rather
than total. For conveniently talking about partial functions, we use the notation def(f(x)) to
abbreviate that f is defined on x.

We define the partial interpretation function J•KgS ⊆ GS × GS by specifying its domain and
its values trough a simultaneous recursion (the cases 3-8 of the second part are as in THODPL):

3See Cramer, Kühlwein, and Schröder (2010) for an introduction to presuppositions in mathematical texts.



• Domain of J•KgS:

1. def(JU(t)KgS) iff [t]gS 6= uS .
2. def(JF (t)KgS) iff [t]gS 6= uS .
3. def(J>KgS).
4. def(Jt1 = t2KgS) iff [t1]

g
S 6= uS and [t2]

g
M 6= uS .

5. def(J¬ϕKgS) iff def(JϕKgS).
6. def(Jϕ ∧ ψKgS) iff def(JϕKgS) and for all h ∈ JϕKgS , def(JψKhS).
7. def(Jϕ→ ψKgS) iff def(JϕKgS) and for all h ∈ JϕKgS , def(JψKhS).
8. def(J∃tϕKgS) iff for all h s.t. h[t]g, def(JϕKhS).

• Values of J•KgS:

1. JU(t)KgS := {h|g = h and [t]gS ∈ US}
2. JF (t)KgS := {h|g = h and [t]gS ∈ F S}

One can define a sound proof system for HODPL that can prove everything provable in AFT.
The details of this proof system are beyond the scope of this paper.

7. Philosophical discussion and conclusion
ZFC is nowadays the most widely accepted formal foundation of mathematics. From a philo-
sophical point of view, it is therefore very natural to ask for a justification of the axioms of
ZFC. Sometimes one hears the opinion that these axioms are self-evident or follow from intu-
ition, and indeed they are often felt to be self-evident by people who have their first contact with
axiomatic set theory (Shelah, 1991, pp.4-5). However, we contend that this feeling, at least in
the case of novices to set theory, comes from the following facts:

• All ZFC axioms apart from Extensionality, Choice and Foundation are instances of set
comprehension, which people naturally feel as being correct. This feeling does not dis-
appear when encountering Russell’s paradox: Indeed the feeling about instances of set
comprehension other than Russell’s paradox is almost untouched by the recognition of a
contradiction in the special instance of set comprehension constituting Russell’s paradox.

• The Axiom of Extensionality constitutes – besides set comprehension – the second funda-
mental part of the intuitive feeling about the concept of set: It is the defining characteristic
of set identity.

• The Axiom of Choice, we contend, is intuitively accepted because people implicitly accept
function comprehension as presented in section 2. as part of their natural understanding of
functions, and this function comprehension implies the existence of choice functions and
hence the Axiom of Choice.

• The Axiom of Foundation is, of all axioms of ZFC, least naturally accepted by people new
to set theory, but is quickly accepted as a limitation of the concept of set to the sets in the
cumulative hierarchy, once this hierarchy has been introduced.

Given that this feeling is thus based on limiting the problematic principle of set comprehension
to some of its instances (the axioms of Empty Set, Pairing, Union, Infinity, Separation and
Replacement), one can further ask for a justification that these instances will not turn out to be
just as contradictory as the now eliminated instances that yielded Russell’s and Burali-Forti’s



paradoxes. Apart from the inductive justification that mathematicians have worked for a long
time with these axioms without encountering a contradiction, a common justification is the
iterative conception of the cumulative hierarchy (e.g. in Shoenfield (1977)). But as pointed out
by Kanamori (2012):

“When Replacement has been justified according to the iterative conception, the
reasoning has in fact been circular as it was in Zermelo (1930), with some feature of
the cumulative hierarchy picture newly adduced solely for this purpose.”

Ackermann set theory starts from a completely different approach to limiting set compre-
hension, but nevertheless turns out to be equivalent to ZF. The fact that two such completely
different approaches to limiting set comprehension yield essentially the same result can be taken
to suggest that the “right” limitation has been found, similarly to the case of the Church-Turing
thesis, where the fact that different formalisations of computability turned out to be equivalent
has been taken to suggest that the “right” notion of computatability has been found.

In the case of Ackermann set theory, we have to add the Axiom of Choice explicitly to get the
full strength of ZFC. If we interpret Ackermann set theory in AFT, on the other hand, the Axiom
of Choice naturally appears. Thus AFT constitutes an alternative foundation of mathematics,
with function as its primitive concept, and naturally including ZFC. Having functions as prim-
itive concept is especially useful for formalising implicit dynamic function introduction, as it
is done in the system HODPL, and this has indeed been our original motivation for developing
AFT.
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