Higher-Order Dynamic Predicate Logic

Marcos Cramer

University of Bonn
cramer@math.uni-bonn.de

1 Dynamic Predicate Logic

Dynamic Predicate Logic (DPL) [3] is a formalism whose syntax is identical to
that of standard first-order predicate logic (PL), but whose semantics is defined
in such a way that the dynamic nature of natural language quantification is
captured in the formalism:

1. If a farmer owns a donkey, he beats it.
2. PL: VaVy (farmer(z) A donkey(y) A owns(z,y) — beats(z,y))
3. DPL: 3z (farmer(x) A Jy (donkey(y) A owns(z,y))) — beats(x,y)

In PL, 3 is not a sentence, since the final occurences of x and y are free. In
DPL, a variable may be bound by a quantifier even if it is outside its scope.
The semantics is defined in such a way that 3 is equivalent to 2. So in DPL, 3
captures the meaning of 1 while being more faithful to its syntax than 2.

2 Dynamic introduction of function symbols

In natural language mathematical texts, function symbols may be introduced
dynamically:

Suppose that, for each vertex v of K, there is a vertex g(v) of L such
that f(stx(v)) C str(g(v)). Then g is a simplicial map V(K) — V(L),
and |g| = f. [4]

Here the natural language quantification “there is a vertex g(v)” locally intro-
duces a new vertex to the discourse; but since the choice of the vertex depends
on v and we are universally quantifying over v, it globally introduces a function
g to the discourse.

If such a dynamic introduction of function symbols is allowed without lim-
itations, this amounts to unrestricted function comprehension, which just like
unrestricted set comprehension leads to inconsistencies. So in any formalisation
of dynamic function introduction, some limitations have to be enforced. For the
sake of simplicity, we use Simple Type Theory (STT) [2] for the formalisation we
sketch below. It is also possible to alleviate the limitations set by STT, in order
to have a system which has the flexibility and logical strength of ZFC set the-
ory: This can be achieved by adapting Ackermann set theory [1] — a conservative
extension of ZFC — to a theory of functions.



2 Marcos Cramer

3 Typed Higher-Order Dynamic Predicate Logic

We extend DPL to a formalism called Typed Higher-Order Dynamic Predicate
Logic (THODPL), which allows for dynamically introduced functions, and con-
sequently also for quantification over functions. THODPL has variables typed
by the types of STT. In the below examples we use x and y as variables of the
basic type i, and f as a variable of the function type i — i. A complex term
is built by well-typed application of a function-type variable to an already built
term, e.g. f(x) or f(f(x)).

The distinctive feature of THODPL syntax is that it allows not only vari-
ables but any well-formed terms to come after quantifiers. So 1 is a well-formed
formula:

1. Yz 3f(z) R(z, f(x))
2. Yz 3y R(x,y)
3. 3f(Vz R(z, f(x)))

The semantics of THODPL is to be defined in such a way that 1 has the
same truth conditions as 2. But unlike 2, 1 dynamically introduces the function
symbol f to the context, and hence turns out to be equivalent to 3.

We now sketch how these desired properties of the semantics can be achieved.
Just as in the case of DPL semantics, we define the interpretation [¢] of a formula
¢ to be a set of pairs of assignments (rather than a set of assignments as in the
case of PL).

In PL and DPL, an assignment assigns objects of the domain D to variables.
In THODPL, an assignment assigns elements of D to variables of type i, func-
tions from D to D to variables of type i — i etc. Additionally, an assignment can
also assign an object (or function) to a complex term. For example, the second
element of any assignment pair in the interpretation of 3f(z) R(x, f(z)) has to
assign some object to f(z).

The semantics of most logical connectives is similar to that of DPL, with
the exception of — and V. We describe — in a somewhat simplified way — the
semantics of V, which plays a crucial role for the equivalence between 1 and 3:

[Vxe] = {{g,h)|h differs from ¢ in at most some function symbols
fi,..., fn, and for all k that differ from g in at most x, there is an assign-
ment j such that (k,j) € [¢] and j(fi(z)) = h(f;)(k(z)) for 1 <i<n}

References

1. Ackermann, W.: Zur Axiomatik der Mengenlehre, Mathematische Annalen, 1956,
Vol. 131, pp. 336-345.

2. Church, A.: A formulation of the simple theory of types, J Symbolic Logic, 1940, 5:
5668

3. Groenendijk, J., Stokhof, M.: Dynamic Predicate Logic. Linguistics and Philosophy,
Vol. 14, no. 1, 1991, pp. 39-100.

4. Lackenby, M.: Topology and Groups (2008), Lecture Notes, http://people.maths.
ox.ac.uk/lackenby/tg050908.pdf.



