
Presupposition Projection and Accommodation in Mathematical Texts

Marcos Cramer Daniel Kühlwein
University of Bonn

{cramer,kuehlwei}@math.uni-bonn.de

Bernhard Schröder
University of Duisburg-Essen

bernhard.schroeder@uni-due.de

Abstract
This paper discusses presuppositions in mathemati-
cal texts and describes how presupposition handling
was implemented in the Naproche system for check-
ing natural language mathematical proofs. Mathe-
matical texts have special properties from a prag-
matic point of view, since in a mathematical proof
every new assertion is expected to logically follow
from previously known material, whereas in most
other texts one expects new assertions to add log-
ically new information to the context. This prag-
matic difference has its influence on how presuppo-
sitions can be projected and accommodated in math-
ematical texts. Nevertheless, the account of presup-
position handling developed for the Naproche sys-
tem turned out to have equivalent projection predic-
tions to an existing account of presupposition pro-
jection.

1 Introduction
The special language that is used in mathematical
journals and textbooks has some unique linguistic
features, on the syntactic, on the semantic and on the
pragmatic level: For example, on the syntactic level,
it can incorporate complex symbolic material into
natural language sentences. On the semantic level,
it refers to rigorously defined abstract objects, and
is in general less open to ambiguity than most other
text types. On the pragmatic level, it reverses the
expectation on assertions, which have to be implied
by the context rather than adding new information
to it.

We call this special language the semi-formal lan-
guage of mathematics (SFLM), and call texts writ-
ten in this language mathematical texts. The con-
tent of mathematical texts can be divided into object

level content (mathematical statements and their
proofs) and meta level content (e.g. historical re-
marks and motivation behind certain definitions and
one’s interest in certain theorems). For the rest of
the paper, we will focus on object level content of
mathematical texts.

Our work on presuppositions in mathematical
texts has been conducted in the context of the
Naproche project. The Naproche project studies
SFLM from the perspectives of linguistics, logic
and mathematics. A central goal of Naproche is
to develop a controlled natural language (CNL) for
mathematical texts and implement a system, the
Naproche system, which can check texts written
in this CNL for logical correctness using methods
from computational linguistics and automatic theo-
rem proving.

The Naproche system first translates a CNL text
into a Proof Representation Structure (PRS). PRSs
are Discourse Representation Structures (DRSs,
(Kamp and Reyle, 1993)), which are enriched in
such a way as to represent the distinguishing char-
acteristics of SFLM (Cramer et al., 2010). For every
statement made in the text, the Naproche System ex-
tracts from the PRS a proof obligation that gets sent
to an automated theorem prover, in order to check
that the claim made by the statement follows from
the available information (Cramer et al., 2009).

In this paper we describe how the checking al-
gorithm of Naproche had to be altered when ex-
pressions triggering presuppositions were added to
the Naproche CNL. Presuppositions also have to be
checked for correctness, but behave differently from
assertions in mathematical texts because of their
special pragmatic properties to be discussed below.



2 Presuppositions
Losely speaking, a presupposition of some utter-
ance is an implicit assumption that is taken for
granted when making the utterance. In the litera-
ture, presuppositions are generally accepted to be
triggered by certain lexical items called presupposi-
tion triggers. Among them are definite noun phrases
(in English marked by the definite article “the”, pos-
sessive pronouns or genitives), factive verbs (like
“regret”, “realize” and “know”), change of state
verbs (“stop” and “begin”), iteratives (“again”) and
some others.

Presupposition projection is the way in which
presuppositions triggered by expressions within the
scope of some operator have to be evaluated out-
side this scope. The precise way in which presup-
positions project under various operators has been
disputed at great length in the literature (see for
example Levinson (1983) and Kadmon (2001) for
overviews of this dispute). The DRS-based pre-
supposition projection mechanism that we came up
with for dealing with presuppositions in mathemat-
ical texts turned out to be equivalent to Heim’s
(1983) approach to presupposition projection.

Presupposition accommodation is what we do if
we find ourselves faced with a presupposition the
truth of which we cannot establish in the given con-
text: We add the presupposition to the context, in
order to be able to process the sentence that presup-
poses it.

In mathematical texts, most of the presupposition
triggers discussed in the linguistic literature, e.g.
factive verbs, change of state verbs and iteratives,
are not very common or even completely absent.
Definite descriptions, however, do appear in math-
ematical texts (e.g. “the smallest natural number n
such that n2 − 1 is prime”). And there is another
kind of presupposition trigger, which does not exist
outside mathematical texts: Function symbols. For
example, the devision symbol “/” presupposes that
its second (right hand) argument is non-zero; and in
a context where one is working only with real and
not with complex numbers, the sqare root symbol
“√ ” presupposes that its argument is non-negative.
As has been pointed out by Kadmon (2001), the
kind of presupposition trigger does, however, not
have any significant influence on the projection and
accommodation properties of presuppositions. For
this reason, we will concentrate on examples with
definite descriptions.

Although terminology is not used in a fully uni-

form fashion among linguists, we will make the fol-
lowing distinctions suitable for our purposes. We
analyse noun phrases semantically into a determiner
(here: “the”) and a restricting property. Definite
noun phrases referring to a single object by a re-
stricting property whose extension contains exactly
one object we call definite descriptions. Definite
noun phrases in the singular with restricting proper-
ties whose extension contains more than one object
get their referential uniqueness usually by anaphoric
reference to an object mentioned previously; they
are called anaphoric definite noun phrases. A math-
ematical example of an anaphoric definite noun
phrase is “the group” used to refer to a group men-
tioned recently in the text. The example above
(“the smallest natural number n such that n2 − 1
is prime”) was an example of a definite description.

The presupposition of a singular definite descrip-
tion with the restricting property F is that there is a
unique object with property F. This presupposition
can be divided into two separate presuppositions:
One existential presupposition, claiming that there
is at least one F, and one uniqueness presupposition,
claiming that there is at most one F.

3 Proof Representation Structures
For the purpose of this paper, we provide a simpli-
fied definition of Proof Representation Structures,
which is very similar to standard definitions of Dis-
course Representation Structures. A full-fledged
definition of Proof Representation Structures can be
found in Cramer et al. (2010).

A Proof Representation Structure is a pair con-
sisting of a list of discourse referents and an or-
dered list of conditions. Just as in the case of DRSs,
PRSs and PRS conditions are defined recursively:
Let A,B be PRSs and d, d1, . . . , dn discourse refer-
ents. Then

• for any n-ary predicate p (e.g. expressed by
adjectives and noun phrases in predicative use
and verbs in SFLM), p(d1, . . . , dn) is a condi-
tion.

• ¬A is a condition, representing a negation.

• B ⇒ A is a condition, representing an as-
sumption (B) and the set of claims made inside
the scope of this assumption (A).

• A is a condition.

• the(d, A) is a condition, representing a definite
description with restricting property F, where



d1, . . . , dm

c1
...
cn

Figure 1: A PRS with discourse referents d1, ..., dm,
and conditions c1, ..., cn.

d is the discourse referent introduced by this
definite description and A is the representation
of F.

Apart from the the-condition, which was also ab-
sent from PRSs as they were defined in Cramer
et al. (2010), there are two differences between
this definition of PRSs and standard definitions of
DRSs: Firstly, the list of PRS conditions is ordered,
whereas DRS conditions are normally thought to
form an unordered set. Secondly, a bare PRS can
be a direct condition of a PRS. Both of these differ-
ences are due to the fact that a PRS does not only
represent which information is known and which
discourse referents are accessible after processing
some (possibly partial) discourse, but also repre-
sents in which order the pieces of information and
discourse referents were added to the discourse con-
text.

Similar to DRSs, we can display PRSs as “boxes”
(Figure 1). If m = 0, we leave out the top cell.

4 Checking PRSs without presuppositions
In order to explain our treatment of presupposi-
tions, we first need to explain how PRSs without
presuppositions are checked for correctness by the
Naproche system.

The checking algorithm makes use of Automated
Theorem Provers (ATPs) for first-order logic (Fit-
ting, 1996).1 Given a set of axioms and a conjecture,
an ATP tries to find either a proof that the axioms
logically imply the conjecture, or build a model for
the premisses and the negation of the conjecture,
which shows that that they don’t imply it. With dif-
ficult problems, an ATP might not find any proof or
counter-model within the time limit that one fixed in
advance. A conjecture together with a set of axioms
handed to an ATP is called a proof obligation.

1The checking algorithm is implemented in such a way that
it is easily possible to change the ATP used. Most of our tests
of the system are performed with the prover E (Schulz, 2002).

The checking algorithm keeps a list of first-order
formulae considered to be true, called premises,
which gets continuously updated during the check-
ing process. The conditions of a PRS are checked
sequentially. Each condition is checked under the
currently active premises. According to the kind of
condition, the Naproche system creates obligations
which have to be discharged by an ATP.

Below we list how the algorithm proceeds de-
pending on the PRS condition encountered. We use
Γ to denote the list of premises considered true be-
fore encountering the condition in question, and Γ′

to denote the list of premises considered true af-
ter encountering the condition in question. A proof
obligation checking that φ follows from Γ will be
denoted by Γ ` φ. For any given PRS A, we de-
note by FI(A) the formula image of A, which is a
list of first-order formulae representing the informa-
tion introduced in A; the definitions of FI(A) and
of the checking algorithm are mutually recursive, as
specified below.

We first present the algorithm for PRS conditions
that do not introduce new discourse referents. Next
we extend it to conditions introducing discourse ref-
erents. In section 5, we extend it further to condi-
tions that trigger presuppositions. (For simplifying
the presentation, we treat formula lists as formula
sets, i.e. allow ourselves to use set notation when in
reality the algorithm works with ordered lists.)

(1) For a condition of the form p(d1, . . . , dn),
check Γ ` p(d1, . . . , dn) and set Γ′ := Γ ∪
{p(d1, . . . , dn)}.

(2) For a condition of the form ¬A, check Γ `
¬

∧
FI(A) and set Γ′ := Γ ∪ {¬

∧
FI(A)}.

(3) For a condition of the form B ⇒ A, where no
discourse referents are introduced in A, check
A with initial premise set Γ ∪ FI(B), and set
Γ′ := Γ ∪ ∆, where ∆ := {∀~x(

∧
FI(B) →

φ)|φ ∈ FI(A)} and ~x is the list of free vari-
ables in FI(B).

(4) For a condition of the form A, where no dis-
course referents are introduced in A, check
A with initial premise set Γ, and set Γ′ :=
Γ ∪ FI(A).

For computing FI(A), the algorithm proceeds
analoguously to the checking of A, only that no
proof obligations are sent to the ATP: The updated



premise lists are still computed, and FI(A) is de-
fined to be Γ′ − Γ, where Γ is the premise list be-
fore processing the first condition in A and Γ′ is
the premise list after processing the last condition in
A. This is implemented by allowing the algorithm
to process a PRS A in two different modes: The
Check-Mode described above for checking the con-
tent of A, and the No-Check-Mode, which refrains
from sending proof obligations to the ATP, but still
expands the premise list in order to compute FI(A).

For the cases (1) and (2), it is easy to see that
what gets added to the list of premises in the Check-
Mode is precisely what has been checked to be cor-
rect by the ATP. In the cases (3) and (4), it can also
be shown that what gets added to the set of premises
has implicitly been established to be correct by the
ATP.

Special care is required when in conditions of
the form B ⇒ A or A, new discourse referents
are introduced in A. Let us first consider the sim-
pler case of a condition of the form A that in-
troduces new discourse referents; this corresponds
to sentences like “There is an integer x such that
2x − 1 is prime.”, i.e. sentences with an existen-
tial claim, which make the existentially introduced
entity anaphorically referencible by the later dis-
course. As would be expected, we need to check
Γ ` ∃x(integer(x)∧prime(2x−1)) in this case. But
we cannot just add ∃x(integer(x)∧ prime(2x− 1))
to the premise set, since the first order quantifier ∃
does not have the dynamic properties of the natural
language quantification with “there is”: When we
later say “x 6= 1”, the proof obligation of the form
Γ ∪ {∃x(integer(x) ∧ prime(2x − 1))} ` x 6= 1
for this sentence would not make sense, since the
free x in the conjecture would not corefer with the
existentially bound x in the axiom.

We solve this problem by Skolemizing (Brach-
man and Levesque, 2004) existential formulae be-
fore adding them to the premise list: In our exam-
ple, we add integer(c) ∧ prime(2c − 1) (for some
new constant symbol c) to the premise list. Later
uses of x will then also have to be substituted by
c, so the proof obligation for “x 6= 1” becomes
Γ ∪ {integer(c) ∧ prime(2c − 1)} ` c 6= 1. Given
that the discourse referents introduced in A become
free variables in FI(A), we can require more gen-
erally: For a condition of the form A which intro-
duces discourse referents, check Γ ` ∃~x(

∧
FI(A))

(where ~x is the list of free variables in FI(A)), and
set Γ′ := Γ∪S(FI(A)). We define S(FI(A)) (the

Skolemized version of of FI(A)) to be the set of
formulae that we get when we substitute each free
variable used in some formula in FI(A) by a dif-
ferent new constant symbol, ensuring that the same
constant symbol is used for the same free variable
across different formulae in FI(A).

In the case of conditions of the form B ⇒ A with
A introducing new discourse referents, we need the
more general kind of Skolemization, which involves
introducing new function symbols rather than new
constant symbols: We proceed in the same way
as for the case when A doesn’t introduce new dis-
course referents, only that in the definition of Γ′ we
replace ∆ by its Skolemized form S(∆). S(∆) con-
sists of Skolemized versions of the formulae in ∆,
where the Skolem functions are chosen in such a
way that any free variable appearing in more than
one formula in ∆ gets replaced by the same function
across the different formulae in which it appears.

5 Checking PRSs with presuppositions
Most accounts of presupposition make reference to
the context in which an utterance is uttered, and
claim that presuppositions have to be satisfied in the
context in which they are made. There are different
formalisations of how a context should be concep-
tualised. For enabling the Naproche checking al-
gorithm described in the previous section to handle
presuppositions, it is an obvious approach to use the
list of active premises (which include definitions) as
the context in which our presuppositions have to be
satisfied.

As noted before, assertions in mathematical texts
are expected to be logically implied by the avail-
able knowledge rather than adding something log-
ically new to it. Because of this pragmatic pecu-
liarity, both presuppositions and assertions in proof
texts have to follow logically from the context. For
a sentence like “The largest element of M is finite”
to be legitimately used in a mathematical text, both
the unique existence of a largest element of M and
its finiteness must be inferable from the context.2

This parallel treatment of presuppositions and as-
sertions, however, does not necessarily hold for pre-
supposition triggers that are subordinated by a log-
ical operation like negation or implication. For
example, in the sentence “A does not contain the
empty set”, the existence and uniqueness presuppo-

2The remaining distinctive feature between assertions and
presuppositions is that the failure of the latter ones makes the
containing sentences meaningless, not only false.



sitions do not get negated, whereas the containment
assertion does. This is explained in the following
way: In order to make sense of the negated sen-
tence, we first need to make sense of what is inside
the scope of the negation. In order to make sense
of some expression, all presuppositions of that ex-
pression have to follow from the current context.
The presuppositions triggered by “the empty set”
are inside the scope of the negation, so they have to
follow from the current context. The containment
assertion, however, does not have to follow from
the current context, since it is not a presupposition,
and since it is negated rather than being directly as-
serted.

In our implementation, making sense of some-
thing corresponds to processing its PRS, whether in
the Check-Mode or in the No-Check-Mode. So ac-
cording to the above explanation, presuppositions,
unlike assertions, also have to be checked when en-
countered in the No-Check-Mode.

For example, the PRS of sentence (5) is (6).

(5) A does not contain the empty set.

(6) ¬ the(x,
empty(x)
set(x) )

contain(A, x)

When the checking algorithm encounters the
negated PRS, it needs to find the formula image of
the PRS, for which it will process this PRS in No-
Check-Mode. Now the the-condition triggers two
presuppositions, which have to be checked despite
being in No-Check-Mode. So we send the proof
obligations (7) and (8) (for a new constant symbol
c) to the ATP. Finally, the proof obligation that we
want for the assertion of the sentence is (9).

(7) Γ ` ∃x(empty(x) ∧ set(x))

(8) Γ ∪ {empty(c) ∧ set(c)} `
∀y(empty(y) ∧ set(y) → y = c)

(9) Γ∪{empty(c)∧set(c),∀y(empty(y)∧set(y) →
y = c)} ` ¬contain(A, c)

In order to get this, we need to use the non-
presuppositional formula image {contain(A, c)} of
the negated PRS: The non-presuppositional formula
image is defined to be the subset of formulae of the

formula image that do not originate from presup-
positions. When implementing the checking algo-
rithm for PRSs with presuppositions, we have to use
this non-presuppositional formula image wherever
we used the formula image in the original checking
algorithm. The presupposition premises which get
pulled out of the formula image have to be added to
the list of premises that were active before starting
to calculate the formula image.

This pulling out of presupposition premises is not
always as simple as in the above example. Consider
for example sentence (10), whose PRS is (11).

(10) There is a finite non-empty set M of natural
numbers such that the largest element of M is
even.3

(11)

M
finite(M)
non-empty(M)
set of nats(M)
the(x, largest elt(x,M) )
even(x)

The Skolemized premise from the existential pre-
supposition is largest elt(c,M), which contains a
free occurence of the variable M , but should be
pulled out of the PRS introducing M , i.e. out of
the scope of M , in order to be added to the set Γ
of premises available before encountering this sen-
tence. Pulling this occurence of M out of the scope
of M would make the premise meaningless, so we
need a more sophisticated approach to pulling out
presupposition premises:

According to the above account, we will check
the existential presupposition in question using the
proof obligation (12). Given that M does not ap-
pear in Γ (as it is a newly introduced discourse ref-
erent), this is logically equivalent to having checked
(13), whose Skolemized form (14) will be added to
Γ (where skx is the new function symbol introduced

3 The definite noun phrase “The largest element of M” can
be read like a function depending on M . When, like in our ex-
ample, such functional definite descriptions are used as func-
tions on a variable that we are quantifying over, the presup-
positions of the functional definite description can restrict the
domain of the quantifier to entities for which the presupposi-
tion is satisfied. Such a restriction of a quantifier is an instance
of accommodation (local accomodation in our account), which
will be treated in section 7. In this section we are interested
in presupposition handling without accommodation, i.e. with-
out restricting the domain of the quantifier in this example. So
the presuppositions of “the largest element of M” have to be
fulfilled for any finite non-empty set M of natural numbers.



for x when Skolemizing). This extended premise set
is used to check the existential claim of the sentence
in (15).

(12) Γ ∪ {finite(M), non-empty(M), set of
nats(M)} ` ∃x largest elt(x,M)

(13) Γ ` ∀M (finite(M) ∧ non-empty(M) ∧
set of nats(M) → ∃x largest elt(x,M))

(14) ∀M (finite(M) ∧ non-empty(M) ∧ set
of nats(M) → largest elt(skx(M),M))

(15) Γ ∪ {(14)} ` ∃M (finite(M) ∧ non-empty
(M) ∧ set of nats(M) ∧ even(skx(M)))

6 Comparison to Heim’s presupposition
projection

Heim (1983) is concerned with the projection prob-
lem, i.e. with “predicting the presuppositions of
complex sentences in a compositional fashion from
the presuppositions of their parts”. For us, the pro-
jection problem only had indirect importance: The
reason for our occupation with presupposition was
to be able to check mathematical texts containing
presupposition triggers for correctness. This does
involve checking that the presuppositions of ev-
ery trigger are satisfied in the local context of the
trigger, but it doesn’t necessarily involve explicitly
computing presuppositions for complex sentences.

Given the sentence (16), Heim’s theory predicts
that the existential presupposition of the definite de-
scription gives rise to the presupposition (17) for the
complex sentence.

(16) If x is positive, then the multiplicative inverse
of x is positive.

(17) If x is positive, then x has a multiplicative in-
verse.

(18)
x
pos(x) ⇒ the(y, mult inv(y, x) )

pos(y)

In our treatment of presupposition, computing the
presupposition (17) explicitly is not the central is-
sue; what we do instead is to justify the presuppo-
sition with the information locally available when
encountering the presupposition. In the example
sentence, whose PRS is (18), the formula image of

the left PRS of the implication condition ({pos(x)})
is Skolemized and added to the set Γ of premises
available before encountering this sentence, so that
the set of premises available when encountering the
the-condition is Γ∪{pos(c)}. Hence the proof obli-
gation for justifying the existential presupposition
of the definite description is (19). Having checked
this is equivalent to having checked (20), i.e. having
deduced Heim’s projected presupposition from Γ.

(19) Γ ∪ {pos(c)} ` ∃y mult inv(y, c)

(20) Γ ` ∀x (pos(x) → ∃y mult inv(y, x))

Also for presuppositions subordinated under
other kinds of logical operators, our theory is in this
way equivalent to Heim’s theory. This is the sense
in which one can say that our theory is equivalent
to Heim’s theory.4 On the other hand, we arrive at
these results in a somewhat different way to Heim:
Heim defines contexts in a semantical way as sets
of possible worlds or, in her account of functional
definite descriptions, as a set of pairs of the form
〈g, w〉, where g is a sequence of individuals and w is
a possible world, whereas we define a context syn-
tactically as a list of first-order formulae.

7 Accommodation
One commonly distinguishes between global and
local accommodation. Global accommodation is
the process of altering the global context in such a
way that the presupposition in question can be jus-
tified; local accommodation on the other hand in-
volves only altering some local context, leaving the
global context untouched. It is a generally accepted
pragmatic principle that ceteris paribus global ac-
commodation is preferred over local accommoda-
tion.

In the introduction, we mentioned the pragmatic
principle in mathematical texts that new assertions
do not add new information (in the sense of log-
ically not infereable information) to the context.
Here “context” of course doesn’t refer to our formal
definition of context as a list of formulae. In fact, if

4Here we are comparing our theory without accommodation
to Heim’s theory without accommodation. Heim calls the pro-
jected universal presupposition for functional noun phrases (as
discussed in the previous section, cf. example (10) with presup-
position (13)) “unintuitively strong”, and gives an explanation
for this using accommodation. But this universal presupposi-
tion is what her account without accommodation predicts, just
as in our case. Cf. the justification for the strong universal
presupposition in footnote 3.



we take a possible world to be a situation in which
certain axioms, definitions, and assumptions hold or
do not hold, we can make sense of the use of “con-
text” in this assertion by applying Heim’s definition
of a context as a set of possible worlds. When math-
ematicians state axioms, they limit the context, i.e.
the set of possible worlds they consider, to the set
where the axioms hold. Similarly, when they make
local assumptions, they temporarily limit the con-
text. But when making assertions, these assertions
are thought be logically implied by what has been
assumed and proved so far, so they do not further
limit the context.

This pragmatic principle of not adding anything
to the context implies that global accommodation is
not possible in mathematical texts, since global ac-
commodation implies adding something new to the
global context. Local accommodation, on the other
hand, is allowed, and does occur in real mathemati-
cal texts:

Suppose that f has n derivatives at x0 and
n is the smallest positive integer such that
f (n)(x0) 6= 0.
(Trench, 2003)

This is a local assumption. The projected existen-
tial presupposition of the definite description “the
smallest positive integer such that f (n)(x0) 6= 0”
is that for any function f with some derivatives at
some point x0, there is a smallest positive integer n
such that f (n)(x0) 6= 0. Now this is not valid in real
analysis, and we cannot just assume that it holds us-
ing global accommodation. Instead, we make use
of local accommodation, thus adding the accommo-
dated fact that there is a smallest such integer for f
to the assumptions that we make about f with this
sentence.

The fact that one has to accommodate locally
rather than globally does not, however, always fix
which context we alter when accommodating. Con-
sider for example sentence (21), used in a context
where we have already defined a set Ax of real num-
bers for every real number x.

(21) For all x ∈ R, if Ax doesn’t contain 1
x , then

Ax is finite.

The question is whether we need to check the finite-
ness of A0 in order to establish the truth of (21), or
whether the the finiteness of A0 is irrelevant. Since
the use of 1

x presupposes that x 6= 0, which doesn’t

hold for any arbitrary x ∈ R, we have to locally
accommodate that x 6= 0. But we can either ac-
commodate this within the scope of the negation or
outside the scope of the negation, but still locally
within the conditional. In the first case, we have
to establish that A0 is finite, whereas in the second
case we don’t.

Unlike the presupposition handling described in
the previous sections, local accommodation has not
yet been implemented into Naproche. Before this
can be done, we need some mechanism for deciding
which of a number of possible local accommoda-
tions is preferred in cases like the above.

8 Related Work
Presuppositions in mathematical texts have already
been studied before: Zinn (2000) discusses presup-
positions and implicatures in mathematical texts.
His work on presuppositions focuses on the presup-
positions that are justified using information from
proof plans. Since Naproche currently doesn’t use
proof plans, this kind of presupposition is not yet
implemented in the Naproche CNL.

Ganesalingam (2009) describes an innovative
way of computing the presuppositions triggered by
mathematical function symbols (like −−1) and the
presuppositions given rise to by selective restric-
tions (e.g. the presupposition “x is a natural num-
ber” of the utterance “x is prime”) from the defini-
tions where the corresponding function symbols or
expressions were defined. Once Naproche imple-
ments other presupposition triggers than just defi-
nite descriptions, an algorithm similar to that pre-
sented by Ganesalingam will be implemented for
computing presuppositions triggered by symbols or
expressions defined in the text.

9 Conclusion
In this paper we discussed the handling of presup-
positions in the checking algorithm of the Naproche
system, and compared its projection predictions to
those of Heim (1983). We noted that our projection
predictions are equivalent to those of Heim, despite
the fact that we arrive at these predictions in a dif-
ferent way.

Additionally, we considered accommodation in
mathematical texts, and noted that global accom-
modation is blocked by a pragmatic peculiarity of
mathematical texts. Future work will involve im-
plementing local accommodation into the Naproche
system.



References
Brachman, Ronald J., and Hector J. Levesque.

2004. Knowledge Representation and Rea-
soning. Morgan Kaufmann Publishers, Mas-
sachusetts, US.

Cramer, Marcos, Peter Koepke, Daniel Kühlwein,
and Bernhard Schröder. 2009. The Naproche
System. Calculemus 2009 Emerging Trend Pa-
per.

Cramer, Marcos, Bernhard Fisseni, Peter Koepke,
Daniel Kühlwein, Bernhard Schröder, and Jip
Veldman. 2010 (in press). The Naproche Project
– Controlled Natural Language Proof Checking
of Mathematical Texts. CNL 2009 Workshop,
LNAI 5972 proceedings. Springer.

Fitting, Melvin. 1996. First-order logic and auto-
mated theorem proving. Springer. Springer.

Ganesalingam, Mohan. 2009. The Language of
Mathematics. Doctoral thesis draft. http://
people.pwf.cam.ac.uk/mg262/
GanesalingamMdis.pdf.

Heim, Irene. 1983. On the projection problem for
presuppositions. D. Flickinger et al. (eds.). Pro-
ceedings of the Second West Coast Conference on
Formal Linguistics, 114-125.

Kamp, Hans, and Uwe Reyle. 1993. From Dis-
course to Logic: Introduction to Model-theoretic
Semantics of Natural Language. Kluwer Aca-
demic Publisher.

Kadmon, Nirit. 2001. Formal Pragmatics. Wiley-
Blackwell, Oxford, UK.

Levinson, Stephen C. 1983. Pragmatics. Cam-
bridge University Press, Cambridge, UK.

Schulz, Stephan. 2002. E – A Brainiac The-
orem Prover. Journal of AI Communications,
15(2):111–126.

Trench, William F. 2003. Introduction to Real
Analysis. Pearson Education.

Zinn, Claus. 2000. Computing Presuppositions and
Implicatures in Mathematical Discourse. J. Bos
and M. Kohlhase (eds.). Proceedings of the Sec-
ond Workshop on Inference in Computational Se-
mantics, 121-135.


