
Internship at the Naproche Project
from April 2009 to July 2009

John W. Schmid

Mathematical Institute, University of Bonn
jwschmid@uni-bonn.de

http://www.naproche.net

1 The Naproche Project

What is a mathematical proof? How do mathematicians present proofs in scien-
tific literature? And can a computer “read” and “calculate” the same proof as
a mathematician? These are some of the core questions the Naproche (Natural
Language Proof Checking) project tries to answer. It is a joint initiative of Peter
Koepke at the Mathematical Institute of University of Bonn, Bernhard Schröder
at the Linguistics Department of University Duisburg-Essen and Gregor Büchel
at the Computer Science Department of the University of Applied Sciences of
Cologne. Using the declarative programming language Prolog, the scientists at
Naproche are constructing a system which lets textbook style proofs be checked
for correctness by a computer. Step one in this is for the program to accept
text formed from a controlled subset of ordinary mathematical language and to
transform this text into formal statements. Step two is converting these formal
representations into first-order logic so that an automated theorem prover (ATP)
can check them. The “language” these formal representations are formulated in
is a unique linguistic construct called Proof Representation Structure (PRS).

Where was my work area within Naproche? Figure 1 shows the architecture
of the Naproche system. The boxes represent the major modules. Next to the
downward arrows, the output format of the corresponding module is shown. The
files mentioned explicitly in the boxes are the ones I worked with.

The procedure is the following: At first, the user submits his input; he
may make use of the help file help.html and the three examples provided on
naproche.net. By means of simple input processing, this input is transformed
into sentences and words. If these sentence obeys the Naproche grammar, that
is, if it is parsed by dcg error.pl, a PRS, representing the semantics of the sen-
tence, can be created. This is done using dcg.pl, the subprogram that constituted
my main work area. Finally, checker.pl forms first-order formulae from the PRS;
these can be checked by an ATP. During these steps, error and warning mes-
sages provide a feedback to the user. If the input can be proven, the output is
“Theorem”.

2 John W. Schmid

Fig. 1. The architecture of the Naproche system.

Internship 3

2 PRSs and Prolog

During the first one-and-a-half weeks, I dug into some of the scientific theory that
contributes to the functioning of the Naproche programs. Namely, a relatively
recent book in computer linguistics called “Representation and Inference for
Natural Language. A First Course in Computational Semantics.” by Blackburn
and Bos. I solved many exercises of the chapters I read, even if homework was
involved. They helped me to get a better grasp of the underlying principles.
Their topic are Discourse Representation Structures (DRSs), a technique from
Computational Linguistics designed to automatically extract the semantics of a
controlled natural language text. The PRSs used in Naproche are a modification
of these structures. I will give a brief explanation about what a PRS is shortly.

In my second week, I had a self-taught crash-course in Prolog, the program-
ming language in which the Naproche program is written. I had to put in some
effort to familiarize with - sit venia verbo - the nature of Prolog, i.e. using a
declarative language instead of an imperative one. Contemplating the concept
of the Naproche program, it becomes quite clear why declarativeness is advan-
tageous: we give our computer sentences forming a textbook proof and ask him
to check it for correctness. For this, we tell him exactly which formal state-
ments need to be formed from the sentences. We tell him as if we were defining
something, and not commanding.

In this period, I also learnt how to implement tests in Prolog, which is a
useful tool for finding errors. For every new feature added to the Naproche
program, at least one extra test is run regularly. This way, one makes sure that
with every update the current functions of the program are conserved. During
my internship, I wrote tests for every predicate I programmed or modified. Two
further debugging methods are the Prolog predicates write and trace. Imagine
write like a marker you put into the program code that creates extra output and
tells you the program passed the point you marked. Meanwhile, trace allows you
to follow the exact steps the Prolog processor made, one by one. I used the latter
one especially often during my later assignments. Furthermore, I learnt how to
write the documentation for my modifications in standard pldoc style. But now
for the things I programmed.

3 The predicate “expecting proof and qed”

My first real programming task was the following. The controlled mathematical
language of the Naproche program requires proofs to follow a certain construc-
tion plan: a sentence saying “Theorem.” or “Lemma.”, a mathematical statement
(called goal), then a sentence of the form “Proof.”, mathematical statements (i.e.
the proof itself), and finally the sentence “Qed.”. This is in accordance with the
standard style of presenting mathematical proofs found in basically all profes-
sional literature. Nevertheless, this is a restriction for the Naproche user, since
other texts simply aren’t recognized as proofs.

As for my task: I implemented a predicate that checked whether the input
obeyed this construction plan or not. In other words, whenever a sentence saying

4 John W. Schmid

“Theorem.” or “Lemma.” occurred, the Prolog engine called my predicate ex-
pecting proof and qed and succeeded only if the following input had the required
form. The code presents a pattern of recursive definitions typical for Prolog: if
the input sentence reads “Proof.”, go on with expecting qed, otherwise, parse the
next sentence, and so on and so forth. In case no such sentence saying “Proof.” is
found, the Prolog engine fails to parse the input and produces an error message
returning the sentence number and the message:
This theorem is missing a ”proof“.

After writing the predicate, I inserted it into dcg.pl, which handles the recog-
nition of the grammar and builds PRSs from text. Later on, it was moved to
the auxiliary document dcg utils. It is now called by dcg error, which acts as
a preprocessor that checks the whole input for grammatical correctness before
the semantics of the text are touched. This makes the compiler recognize errors
much more quickly. It was a very adequate first task for me.

4 Metasentences, Part I

4.1 What is a PRS?

Unfortunately, I cannot quickly explain how Prolog works. But, before talking
about metasentences, I will quickly allude the concept of a PRS. For more de-
tailed information, see Kühlwein1.
When thinking of a PRS, imagine a box containing the following five constituents:

– The Identification number (id)
– A list of mathematical referents (mrefs)
– A list of discourse referents (drefs)
– A list of textual referents (rrefs)
– An ordered list of conditions (conds).

The various referents are the subjects of the statements made in the Naproche
program, i.e. they are the objects which (un-)quantified variables are linked
to, whereas the conditions are statements themselves, possibly containing other
statements. How is this done? Here are some important conditions a PRS can
have:

– for any n-ary predicate p and drefs X1 through Xn, predicate(X1, . . . , Xn, p)
– holds(X), representing the claim that the formula referenced by the dref X

is true.
– math id(X, Y), which binds a discourse referent X to a mathematical refer-

ent Y (a formula or a term).
– PrsA
– neg(PrsA), representing a negation.

1 Daniel Kühlwein: A calculus for Proof Representation Structures, Bonn 2009, pub-
lished on www.naproche.net

Internship 5

– PrsA⇒ PrsB, representing an implication A and the set of claims B made
inside the scope of this implication. If PrsA contains no conditions, the
condition represents a universally quantified formula

– PrsA ∨ PrsB, representing a disjunction
– >< [PrsA, PrsB, . . .], representing an exclusive disjunction (a statement of

the form ”exactly one of the following PRS-conditions is true“)
– NEW: <> [PrsA, PrsB, . . .], representing a statement of the form ”at most

one of the following PRS-conditions is true“,

where PrsA and PrsB are PRSs themselves. Let’s look at an easy example: see
Fig. 2.

There are three PRSs within the big PRS we are looking at: two PRSs con-
nected by a right-arrow implication that is the only condition in the big PRS,
and one within the right one of these two2. In this case, we say the big PRS sub-
ordinates the two medium-level ones, and the right one subordinates the negated
one. How does this matter? Well, did you notice that the variables x and y are
introduced in the left PRS, in which they appear, but in the negated one, they
appear without having been introduced in that own PRS’s dref list. This is so,
because the drefs of the lefthand PRS are accessible to the negated one. In the
Naproche programming code, each PRS possesses discourse referents accessible
before the PRS itself and discourse referents discourse referents accessible after
it. The rules for accessibility follow an intuitive visual concept: PRSs that lie in-
side a given PRS or that have an arrow pointing from a given PRS to it, possess
all the accessible variables that the given PRS does (and possibly more). Then
again, a computer can hardly rely on its visual intuition, which is why we must
feed him these rules when we tell him how to build PRSs, i.e. in the module
dcg.pl.

4.2 How does a metasentence work?

So what is a metasentence? For Naproche, a metasentence is a sentence that
makes statements about other sentences containing mathematical content. An
everyday example, not from Naproche, would be

“1 + 1 = 2. This is true.”.

The second sentence is a metasentence: it refers to the precedent sentence.
What’s more, to decide whether the second sentence is true or false, it is in-
evitable to know whether the first one is correct or not. So much for the very
basic concept.

Now, the trouble with parsing this very example lies in the much-studied
problem of pronoun resolution; here I will spare everyone from the details of this
field. So what is a metasentence the Naproche program accepts?

2 The right-hand-side of such an implication (or an assumption or likewise) is called
a scope.

6 John W. Schmid

Fig. 2. An example of a PRS.

Internship 7

“Case one. a < b.[..]Casetwo.b < a. [..] Case one or case two is true.”

The last sentence here is a metasentence in the meaning of Naproche. It
refers to a case distinction made previously. Cases consist of an ID and a formal
statement that characterizes them, called the case restrictor. The job of the
predicate metasentences is to parse this kind of sentence. The sentence always
consists of a noun phrase, here “Case one or case two”, and a verb phrase,
here “is true”. Now, the tricky part of metasentences was the following. The
information concerning the case restrictors is obviously contained in the noun
phrases. But the information on how to logically connect the case restrictors is
contained both in the noun phrase, i.e. “X or Y”, and in the verb phrase, i.e.
“is true”, so we need to take PRS X and PRS Y and form a PRS containing the
condition X ∨ Y. But in the moment when we parse the noun phrase, we do not
know all this yet. Now look at the code for the predicate metasentence:

metasentence(MetaPRS,mode~Mode) -->
trigger(type~statement),
{
MetaPRS = id~Id..accbefore~AccBefore
},
meta_np(PRSList,Junctor,Id,AccBefore),
meta_vp(PRSList,Junctor,MetaPRS,mode~Mode).

The parameter just refers to the grammatical mode of the verb at the end of
the sentence. Mode can be either finite, infinitive, or to-infinitive. PRSs are
created from the cases listed in the noun phrase and put into a list of PRSs
called PRSList. This parameter, PRSList, is constructed within the predicate
meta np and then used in meta vp. Meanwhile, the parameter called “Junctor”,
crucial for the metasentence’s formal statement, is determined within meta np
and meta vp. In the example sentence, “X and Y are true”, the np “X and
Y” qualifies either as a meta np with the junctor “and” or “neg and” (negated
and), while the vp “are true” qualifies as a meta vp with the junctor “and” or
with others, but not with the juntor “neg and”. This way, meta np and meta vp
determine this parameter together. An extra difficulty in determining the junctor
of a metasentence is contributed by commas. The words “Case one, case two,”
could either belong to an AND-statement or to an OR-statement, until one of
the two connectors actually gets parsed. What Prolog does is to try out and
parse one of them and either succeed or fail. Implementing this cost some effort.

Another important detail concerns the accessibility of variables. With all
Junctors except “and”, the variables of the PRS for case 1 are not accessible to
the PRS for case 2. This is sensible, since we are dealing with two distinct cases,
which need not both be true nor be connected with each other at all. If, for
instance, case 1 says: “There is an a such that a¡b.” and case 2 says: “a is odd.”,
then we don’t want the Prolog engine to confuse the two distinct variables called
a, unless case 1 and case 2 are both supposed true. Following the guidelines for
PRS construction described above, we thus need to construct altogether different
PRSs. In case the Junctor is “and”, the drefs accessible after case 1 become the

8 John W. Schmid

ones accessible before case 2. In case it is not, the drefs accessible before case 2
are the same ones that are accessible before case 1.

As mentioned, the freshly built list of PRSs is then somehow logically con-
nected within meta vp. To do this, I implemented the following auxiliary predi-
cates:

– meta merge takes a list of PRS and merges them, using the existent predicate
prs merge.

– negate cases takes a list of PRSes and makes a list of their negations. This
list consists of conditions!

– negate cases in boxes takes a list of PRSes and makes a list of PRSes con-
taining their negations.

– disjunct cases takes the PRS list and recursively connects PRSes through
”or”.

All in all, the predicate metasentences takes a certain sentence, extracts its
case-restrictors and a logical connection and forms a PRS from these. We will
see more examples of metasentences after the next two chapters.

5 Modifying Case Distinction

First, I will explain what I mean by a “case distinction”. A case distinction is a
text within a proof that contains cases in which different assumptions are made.
A classical example is the following:

Proof. [...] Now we have three cases. Case one. x < y. Then f(x) = f(y).
Case two. x = y. In particular f(x) = f(y).
Case three. x > y. Hence f(x) = f(y).
So in all cases f(x) = f(y). Qed.

Here we have another one:

[...] Now precisely one of the following cases holds.
Case one. u < v. Case two. u > v.
So it is not the case that u = v. [...]

During the process of implementing the predicate metasentence, Marcos
Cramer and I also modified the predicates text, cases text, exclusive cases and
cases. This necessity arose because we found the following bug. If we submit-
ted a proof containing a case distinction with a metasentence afterwards, the
Naproche program did not just jump back to the ”original“ level of the proof,
but treated the metasentence as a part of the last single case, instead. So how
do the predicates work now?

5.1 The predicate ”text“

The predicate text has a very fundamental function in dcg.pl and can be called
at almost any point of input processing.Text contains statements, definitions,

Internship 9

assumptions, theorems and cases. There used to be a distinction between ”text“,
where there necessarily to be a sentence or more, and ”text tail“, which was
space possibly filled by sentences. Also, there used to be a distinciton between
text in- and outside theorems. What did no yet exist, though, was text within
a certain case distinction. We made a single predicate from these types of text,
adding two GULP-features to it named ”type“ and ”empty“. Type can assume
the modi normal, all ass closed, theorem and in case. Empty can assume the
modi no and possible.

So how exactly is a case distinction possible? In the predicate text, case
distinctions are divided into two types.

– During any text, we may introduce cases via cases text, close them with a
closing statement (see below), and continue with text.

text(In,Out,type~Type) -->
cases_text(In,TmpOut,type~Type),
text(TmpOut,Out,type~Type..empty~possible).

– At the end of a proof, however, if we aren’t in a case distinction already, we
may introduce cases and don’t need to close them.

text(In,Out,type~Type) -->
{
\+ Type = in_case
},
cases(In,TmpOut,[],CaseList,type~Type..subtype~beginning),
{
% this predicate adds a condition stating that
% (at least) one of the cases that have been introduced must hold.
add_case_distinction(CaseList,TmpOut,Out)
}.

Here, add case distinction takes an ingoing PRS and a list of cases, disjuncts
the cases and adds the resulting PRS to the original PRS’s conditions (confer
code). It makes use of the auxiliary predicate disjunct cases described earlier;
both predicates are implemented in dcg utils.pl.

5.2 The predicate ”cases text“

Cases text can either be used for listing mutually exclusive cases, or for proving
something by case distinction and finishing it with a closing statement. The
important point is that, either way, a complete ”text about case distinction“ is
there, as opposed to the predicate cases, which only handles a list of cases.

– Mutually exclusive cases are introduced either by the sentence

Precisely one of the following cases holds.

10 John W. Schmid

or by

At most one of the following cases holds.

and the rest of the input is processed by exclusive cases. Note that in this
version, only the case assumptions (i.e. case-restrictors) are listed, no state-
ments connected with them!

– For proving a simple (non-exclusive) case distinction, the cases and their
subsequent texts are first called by cases, producing case-restrictors and
scopes (see: What is a PRS?). Then, add case distinction is applied to the
list of case-restrictors. This ensures that one of the cases really holds. And
finally, a last sentence in a specific format needs to be parsed: it must contain
the words ”in all cases“ before the noun. This way, we know that the case
distinction is over and we jump back to the higher semantical level (before
the case assumptions like ’If x<y, ...’).

5.3 The predicate ”exclusive cases“

This predicate consists of a mere list of cases that are to be inserted in a ”><-
condition“ (if exactly one case is true) or a ”<>-condition“ (if at most one case
is true).
And that is precisely what it does: it works its way through the PRS list and
forms the respective condition, adding each PRS to its objects (see example).
To translate ><- or <>-condition into more explicit logical statements is left to
the checker!3

5.4 The predicate ”cases“

Cases processes a list of single cases and proofs attached to each of them. A
single case contains the sentence ”case n: Statement” and then Text. Statement
and Text are both transformed into PRSes. An implication condition Statement
==> Text is added to the outgoing PRS, and Statement is added to the list of
case-restrictors. Before the first case, an introductory sentence is possibe confer
case introduction.
Besides that, the predicate cases possesses the GULP-feature ”Type“, same as
text and cases text do. Like these predicates, in cases, type can be in case, in-
dicating that the text is situated within a case distinction. Case distinctions
within case distinctions are possible, here cases text is called by text ; confer the
appended example.
But what’s more, cases features a ”Subtype“, indicating whether we are dealing
with the first case or not. This implementation has to do with the introductory
sentence contained by case introduction. Case introduction contains either a sen-
tence saying ”there are N cases” (N>=2) or nothing. If SubType is ’in case’, this
sentence is obligatory. On the other hand, if we are just presenting the second
case, the sentence is not permitted.
3 This sort of implementation, that adds a symbol to the controlled natural language

which is logically redundant but appealing, is called ”syntactic sugar“.

Internship 11

6 Metasentences, Part II

Now for the promise I made earlier: I will enumerate the different types of state-
ments in metasentences, characterized by the Junctors. All of this happens within
the realms of the predicate meta vp. remember the words in meta vp are either
an affirmative or a negative clause. meta vp takes the list of case-PRSs from
meta np and does one of eight things:

– 1. affirmative, and: conjunct them.
– 2. negative, and: negate, then conjuct them.
– 3. affirmative, or: disjunct them.
– 4. negative, or: negate, then disjunct them.
– 5. ’precisely one case holds’: puts the list in a ’><’ condition.
– 6. ’precisely one case is false’: negates them, puts them in a ’><’ condition.
– 7. ’at most one case holds’: puts the list in a ’<>’ condition.
– 8. ’at most one case is false’: negates them, puts them in a ’<>’ condition.

As you can guess, version 2 makes use of negate cases, version 4 makes use
of negate cases in boxes and versions 3 and 4 make use of disjunct cases. I have
described most of this earlier, just one thing is new: the ”<> −“ or ”at most one-
condition“ was something I implemented both into dcg.pl and into checker.pl.
The latter was a new sort of task for me, since all my work had concentrated
on how to build PRSs from sentences so far. Now the quest was constructing
formal statements from given PRSs. Fortunately, I could make use from previous
programming done for checking ”>< −“ or ”xor-conditions“. Why was this so?
The sole logical difference between the statements ”precisely one of the cases
[...] holds“ and ”at most one of the cases [...] holds“ is that, in the first case,
one of the cases listed is true, whereas in the latter cases this isn’t necessary.
So I basically copied the concept of xor-statement-processing implemented into
checker.pl and subtracted the statement saying one of the cases are true. What
was left was the following: if the condition was

– <>[A,B,C,D,E],

then, recursively, collect the statements

– A => (neg(B) ∧ (neg(C) ∧ (neg(D) ∧ neg(E)))),
– B => (neg(C) ∧ (neg(D) ∧ neg(E))),
– C => (neg(D) ∧ neg(E)) and
– D => neg(E),

and conjunct them.
I had already modified this part of the predicate so it could cope with an arbitrary
number of cases, see Miscellaneous.

12 John W. Schmid

7 Miscellaneous Work

Here are some minor tasks I did, that do not belong to any of the work areas
mentioned:

– I transcribed the examples of Naproche-provable theorems so far into html,
so online users can make use of them when working with the web interface.
See ex-1.html through ex-3.html.

– Using the simple predicate rest list, I changed the program codes of the
existent predicates lemma and theorem from standard Prolog code to dcg
code. This simplifies the code greatly.

– In checker.pl, I extended a part of the predicate check conditions that checked
exclusive disjunctions, i.e. metasentences of the form ”Precisely one of case 1,
... and case n are true“. Previously, checker.pl was able to handle up to four
cases. I modified the prdicate such that any number n of cases is possible.

– A minor problem in premises.pl was fixed by me; I modified the code concern-
ing the implication condition, such that, in the implication PrsA => PrsB,
the premises of PrsA plus the conditions of PrsA constitute the premises on
which the conditions in PrsB are checked.

– During my internship, Marcos Cramer started the new module dcg error.pl,
that checks whether a given input has the right format, disregarding its se-
mantics. To do this, he modified a version of dcg.pl that was out-of-date
shortly later. I continuously updated dcg error.pl, adding in the new func-
tions that dcg.pl had received.

– Up to now, the module dcg.pl has grown considerably and become more dif-
ficult to read. To make the module’s function comprehensible to a larger
audience of computer linguists, Marcos Cramer decided it needed to be
transcribed into an EBNF (Erweiterte Backus-Naur-Form) format. I studied
EBNF notation and made a first version of this transcription (see Appendix).

8 Conclusion

I am glad that I decided to do this exact internship. Working in it was quite
different from my ordinary studies. It cost effort and a lot of time, it was a very
filigree matter to work on and certain tasks were somewhat frustrating. But it
was an excellent experience in an area that was very new to me. After a couple
of weeks I felt quite satisfied with my progress. I got the rewarding feeling that
I was probably doing useful bits of work in the Naproche project. The lectures
and workshops titled Formal Mathematics gave me glimpses of the outline and
the aims of Naproche. Working fixed hours at a fixed place with the small and
select Naproche team turned out to be delightful.

There hardly ever was a dull moment, or at least a lot less than if I had been
programming anything on my own. I want to thank Marcos Cramer and Daniel
Kühlwein for their help, their patience and, last but not, their good teaching.

Internship 13

9 Appendix

9.1 Excerpt from dcg.pl and dcg utils.pl : the predicate ”meta vp“
and its auxiliary predicates

%% meta_vp(+PRSList,?Junctor,?MetaPRS,+Mode)
%
% the words in meta_vp are either an affirmative
% or a negative clause.
%
% meta_vp takes the list of case-PRSs from meta_np and does
% one of eight things:
%
% 1. affirmative, and: conjunct them.
% 2. negative, and: negate, then conjuct them.
% 3. affirmative, or: disjunct them.
% 4. negative, or: negate, then disjunct them.
% 5. ’precisely one case holds’: puts the list in a ’><’ condition.
% 6. ’precisely one case is false’: negates them, puts them in a ’><’ condition.
% 7. ’at most one case holds’: puts the list in a ’<>’ condition.
% 8. ’at most one case is false’: negates them, puts them in a ’<>’ condition.
%
% @param: PRSList is a list of case-PRSs
% @param: Junctor can be: and (-> 1), negated_and (-> 2), or (-> 3 or 4),
% xor_rest (-> 5 or 6), at_most_one_rest (-> 7 or 8).
% @param: MetaPRS enters with id and possibly rrefs and exits as a complete PRS.
%
% version 2 makes use of negate_cases/2,
% version 4 makes use of negate_cases_in_boxes/2,
% versions 3&4 make use of dcg_utils:disjunct_cases/2.

% 1. affirmative, and: conjunct PRSes.
meta_vp(PRSList,and,MetaPRS,mode~Mode) -->
correct(mode~Mode),
{
EntryPRS = conds~[]..drefs~[]..mrefs~[],

% merges the list of PRSes
meta_merge(EntryPRS,PRSList,ExitPRS),
!,
ExitPRS = conds~Conds..drefs~Drefs..mrefs~Mrefs..accafter~Acc,
MetaPRS = conds~Conds..drefs~Drefs..mrefs~Mrefs..accafter~Acc
}.

% 2. negative, and: negate, then conjuct them.

14 John W. Schmid

meta_vp(PRSList,negated_and,MetaPRS,mode~Mode) -->
false(mode~Mode),
{

% the list of PRS must be reversed so that the corresponding
% conditions reappear in the correct order.
reverse(PRSList,NewList),

negate_cases(NewList,NegCondList),

% since negate_cases returns a list of conditions, no further
% conjunction is necessary.
MetaPRS = conds~NegCondList..rrefs~[]..drefs~[]..mrefs~[]
}.

% 3. affirmative, or: disjunct them.
meta_vp(PRSList,or,MetaPRS,mode~Mode) -->
correct(mode~Mode),
{
disjunct_cases(PRSList,MetaPRS)
}.

% 4. negative, or: negate, then disjunct them.
meta_vp(PRSList,or,MetaPRS,mode~Mode) -->
false(mode~Mode),
{

% disjunct_cases handles lists of PRSes. hence we need to use
% negate_cases_in_boxes and produce a PRS list.
negate_cases_in_boxes(PRSList,NegPRSList),

disjunct_cases(NegPRSList,MetaPRS)
}.

% 5. ’precisely one case holds’: puts the list in a ’><’ condition.
meta_vp(PRSList,xor,MetaPRS,mode~Mode) -->
correct(mode~Mode),
{

% the ><[..] condition is a grane of syntactic sugar.
% ><[A,B,C] specifically means ’A xor B xor C’.
MetaPRS = conds~[><(PRSList)]..rrefs~[]..drefs~[]..mrefs~[]
}.

% 6. ’precisely one case is false’: negates them, puts them in a ’><’ condition.

Internship 15

meta_vp(PRSList,xor,MetaPRS,mode~Mode) -->
false(mode~Mode),
{

% ><[..] handles lists of PRSes. hence we need to use
% negate_cases_in_boxes and produce a PRS list.
negate_cases_in_boxes(PRSList,NegPRSList),

% the ><[..] condition is a grane of syntactic sugar.
% ><[A,B,C] specifically means ’A xor B xor C’.
MetaPRS = conds~[><(NegPRSList)]..rrefs~[]..drefs~[]..mrefs~[]
}.

% 7. ’at most one case holds’: puts the list in a ’<>’ condition.
meta_vp(PRSList,at_most_one,MetaPRS,mode~Mode) -->
correct(mode~Mode),
{

% the <>[..] condition is a grane of syntactic sugar.
% <>[A,B,C] specifically means ’at most one of A,B and C holds’, or
% ’the cases A, B and C exclude one another’.
MetaPRS = conds~[<>(PRSList)]..rrefs~[]..drefs~[]..mrefs~[]
}.

% 8. ’at most one case is false’: negates them, puts them in a ’<>’ condition.
meta_vp(PRSList,at_most_one,MetaPRS,mode~Mode) -->
false(mode~Mode),
{

% <>[..] handles lists of PRSes. hence we need to use
% negate_cases_in_boxes and produce a PRS list.
negate_cases_in_boxes(PRSList,NegPRSList),

% the <>[..] condition is a grane of syntactic sugar.
% <>[A,B,C] specifically means ’at most one of A,B and C holds’, or
% ’the cases A, B and C exclude one another’.
MetaPRS = conds~[<>(NegPRSList)]..rrefs~[]..drefs~[]..mrefs~[]
}.

% correct (+Mode)
%
% contains the affirmative np.

correct(mode~Mode) -->

16 John W. Schmid

verb(_,transitive~copula..mode~Mode),
[correct].

correct(mode~Mode) -->
verb(_,transitive~copula..mode~Mode),
[true].

correct(mode~finite) -->
[hold].

correct(mode~finite) -->
[holds].

% false (+Mode)
%
% contains the negative np.

false(mode~Mode) -->
verb(_,transitive~copula..mode~Mode),
[false].

false(mode~Mode) -->
verb(_,transitive~copula..mode~Mode),
[incorrect].

false(mode~finite) -->
[does,not,hold].

false(mode~finite) -->
[do,not,hold].

% meta_merge (?MergedPRSesSoFar,?PRSesToBeMerged,-ExitPRS)
%
% uses prs_merge to merge all the PRSes in the List PRSesToBeMerged.

meta_merge(MergedPRSes,[],MergedPRSes).

meta_merge(EntrancePRS,[PRS|Tail],ExitPRS) :-
prs_merge(EntrancePRS,PRS,TempPRS),
meta_merge(TempPRS,Tail,ExitPRS).

% negate_cases(+PRSList,-NegCondList)

Internship 17

%
% takes a list of PRSes and makes a list of their negations.
% this list consists of conditions!

negate_cases([],[]).

negate_cases([PRS|PRSList],[neg(PRS)|NegCondList]) :-
negate_cases(PRSList,NegCondList).

% negate_cases_in_boxes(+PRSList,-NegPRSList)
%
% takes a list of PRSes and makes a list of PRSes containing their negations.

negate_cases_in_boxes([],[]).

negate_cases_in_boxes([PRS|PRSList],[NegPRS|NegPRSList]) :-
PRS = id~case(Identifier,Id)..accbefore~AccBefore,
NegPRS = id~not_case(Identifier,Id)..conds~[neg(PRS)]..mrefs~[]..drefs~[]
..accbefore~AccBefore..accafter~AccBefore..rrefs~[],

negate_cases_in_boxes(PRSList,NegPRSList).

%% add_case_distinction(+CaseList,+In,-Out)
%
% Takes an ingoing PRS and a list of cases, disjuncts the cases and adds the
% resulting PRS to the original PRS’s conditions.
%
% Effectively, at least one case on the list must hold.

add_case_distinction(CaseList,In,Out) :-
In = id~Id..accafter~Acc..conds~Conds..drefs~Drefs..mrefs~Mrefs..rrefs~Rrefs,
CaseDistinction = id~case_distinction(Id)..accbefore~Acc,
disjunct_cases(CaseList,CaseDistinction),
Out = id~Id..conds~[CaseDistinction|Conds]..accbefore~Acc..accafter~Acc
..drefs~Drefs..mrefs~Mrefs..rrefs~Rrefs.

%% disjunct_cases(+PRSList,?BoxAbove)
%
% takes the PRS list and recursively connects PRSes through "or".
%
% BoxAbove enters with id, accbefore and possibly rrefs and exits as a complete PRS.

disjunct_cases([PRS1,PRS2],BoxAbove) :-
BoxAbove = conds~[PRS1 v PRS2]..drefs~[]..mrefs~[]..accbefore~AccBefore
..accafter~AccBefore.

18 John W. Schmid

disjunct_cases([PRS|PRSList],BoxAbove) :-
BoxAbove = id~Id..accbefore~AccBefore,
BoxToTheRight = id~or(Id)..accbefore~AccBefore,
disjunct_cases(PRSList,BoxToTheRight),
!,
BoxAbove = conds~[PRS v BoxToTheRight]..drefs~[]..mrefs~[]..accafter~AccBefore.

9.2 Excerpt from dcg.pl : the predicate ”text“

%% text(+In:PRS,-Out:PRS,?GULP)
%
% Text contains statements, definitions, assumptions, assumption closings, cases
% and case closings. A text can never be empty.
% Adds the content of the parsed text to the In:PRS
%
% @ param GULP type can assume the modi normal, all_ass_closed, theorem and in_case.
% @ param GULP empty can assume the modi no and possible.

text(In,Out,type~Type) -->
[sentence(Id,Content)],
{
statement(In,TmpOut,Id,Content,[]),
!
},
text(TmpOut,Out,type~Type..empty~possible).

text(In,Out,type~Type) -->
definition_text(In,TmpOut),
text(TmpOut,Out,type~Type..empty~possible).

text(In,Out,type~Type) -->
% This rule is for assumptions that don’t get closed by a "thus".
% We could theoretically refrain from checking the absence of a closing "thus",
% as such a thus would make the text_tail fail. But this would produce a huge amount
% of extra progressing power, which would increase exponentially.
% Hence we check the absence of a closing "thus" using the auxiliary predicate
% no_assumption_closing. The reason why this predicate makes the program much more
% efficient, is because it doesn’t do any work (like PRS construction) apart from
% checking the absence of a "thus" that closes this assumption.
{
\+ Type = all_ass_closed
},

Internship 19

[sentence(Id,Content)],
rest_list(List),
{
no_assumption_closing(List,[]),
In = accafter~InAcc,
AssumptionPRS = id~Id..accbefore~InAcc..rrefs~[],
assumption(AssumptionPRS,Content,[]),
!,
AssumptionPRS = accafter~AssumptionAcc,
TmpConclusionPRS = id~conseq(Id)..accbefore~AssumptionAcc..accafter~AssumptionAcc
..mrefs~[]..rrefs~[]..drefs~[]..conds~[]

},
% In this case, the assumption does not get closed, therefore the complete remaining
% PRS construction proceeds in the RHS of the Assumption Condition.
text(TmpConclusionPRS,ConclusionPRS,type~Type..empty~possible),
{
In = id~InId..mrefs~Mrefs..drefs~Drefs..rrefs~Rrefs..conds~Conds..accbefore~Acc
..accafter~AccAfter,

Out = id~InId..mrefs~Mrefs..drefs~Drefs..rrefs~Rrefs
..conds~[AssumptionPRS ==> ConclusionPRS |Conds]..accbefore~Acc..accafter~AccAfter

}.

text(In,Out,type~Type) -->
% The closed assumption case. For unclosed assumptions, see the previous rule.
assumption_text(In,TmpOut),
text(TmpOut,Out,type~Type..empty~possible).

% during any text, we may introduce cases, close them with a closing statement,
% and continue with text.
text(In,Out,type~Type) -->
cases_text(In,TmpOut,type~Type),
text(TmpOut,Out,type~Type..empty~possible).

% at the end of a proof, however, if we aren’t in a case distinction already, we may
% introduce cases and don’t need to close them.
text(In,Out,type~Type) -->
{
\+ Type = in_case
},
cases(In,TmpOut,[],CaseList,type~Type..subtype~beginning),
{
% this predicate adds a condition stating that (at least) one of the cases
% that have been introduced must hold.
add_case_distinction(CaseList,TmpOut,Out)
}.

20 John W. Schmid

text(In,Out,type~theorem) -->
lemma(In,TmpOut),
text(TmpOut,Out,type~theorem..empty~no).

text(In,In,empty~possible) --> [].

9.3 Excerpt from dcg.pl : the predicate ”cases“ with two auxiliary
predicates

%% cases(+In,-Out,+CaseListIn,-CaseListOut,?GULP)
%
% a case contains the sentence "case n: Statement" and Text.
% Statement and Text are both transformed into PRSes.
% an implication condition Statement ==> Text is added to In, and
% Statement is added to CaseListIn.
%
% @param In & Out are PRSes,
% @param CaseListIn & CaseListOut are lists of PRSes.
% @param GULP: type enters from text or cases_text and is transferred
% to text or cases itself.
% if type is "in_case", new case distinctions must be announced.
% if type is "rest-list", announcements ("there are N cases") may
% not be made before the case.
%
% Case distinctions within case distinctions are possible, here
% "cases_text" is called by text.

cases(In,Out,CaseListIn,CaseListOut,type~Type..subtype~SubType) -->
case_introduction(type~Type..subtype~SubType),
[sentence(_,[case,Identifier])],
[sentence(CaseRestrId,Content)],
{
In = accafter~Accessibles,
CaseRestr = id~CaseRestrId..accbefore~Accessibles,
proposition_coord(CaseRestr,mode~finite,Content,[]),
!,

% Store Rref Identifier
getval(refids,Refs),
setval(refids,[ref(Content,case(Identifier))|Refs]),

CaseRestr = accafter~Acc,
NewCase = id~text_case(Identifier)..accbefore~Acc..drefs~[]

Internship 21

..mrefs~[]..conds~[]..rrefs~[]..accafter~Acc
},
text(NewCase,CaseScope,type~in_case),
!,
{
In = conds~Conds..id~Id..dref~Drefs..mrefs~Mrefs..accbefore~AccBefore
..accafter~AccAfter,

TmpOut = conds~[CaseRestr ==> CaseScope|Conds]..id~Id..dref~Drefs
..mrefs~Mrefs..accbefore~AccBefore..accafter~AccAfter,

!
},
cases(TmpOut,Out,[CaseRestr|CaseListIn],CaseListOut,type~Type
..subtype~rest-list).

cases(In,In,CaseListIn,CaseListIn,subtype~rest-list) --> [].

% case_introduction contains either a sentence saying "there are N cases" (N>=2)
% or nothing. if type is ’in_case’, this sentence is obligatory. on the other hand, if
% we’re just presenting the second case, the sentence isn’t permitted.

case_introduction(subtype~SubType) -->
{ \+ SubType = rest-list },
[sentence(_,Content)],
{
trigger(type~statement,Content,[there,are,Number,cases]),
number(Number,[Number],[])
}.

case_introduction(type~Type) --> { \+ Type = in_case }, [].

% even within a case, if a subcase A has been introduced, subcase B
% must not be prefixed by an introductory sentence.

case_introduction(subtype~rest-list) --> [].

% case_closing starts with a case_closing_trigger

case_closing(PRS) --> trigger(type~statement), trigger(type~case_closing),
proposition_coord(PRS,mode~finite).

9.4 The Naproche DCG and fo grammar.pl in EBNF notation

(*

22 John W. Schmid

dcg_simple.pl + dcg_lexicon.pl in EBNF-Schreibweise

*)

variable_list = {(math_variable | math_function_term), ","} | math_var_list;

such_that_clause = "such", "that", proposition_coord_finite;

composite_sentence = formula_trigger, math-formula | composite_sentence_finite |
composite_sentence_infinitive | composite_sentence_to-infinitive;

composite_sentence_finite = sentence_finite | metasentence_finite | sentence_init,
proposition_coord_that;

composite_sentence_infinitive = sentence_infinitive | metasentence_infinitive;
composite_sentence_to-infinitive = sentence_to-infinitive |
metasentence_to-infinitive;

sentence_init = "it", "is", ("false" | ["not"], "the", "case");

sentence_finite = np, vp_finite;
sentence_infinitive = np, vp_infinitive;
sentence_to-infinitive = np, vp_to-infinitive;

np = math_formula | specifier, nbar;

specifier = specifier_one | specifier_definite | specifier_indefinite |
specifier_universal | specifier_negative;

nbar = {adjective}, ([noun], variablebar | noun);

variablebar = math_variable, [such_that_clause];

math_formula = ???????;

(* verb phrases *)

vp_finite = copula_verb_finite , ["not"], (adjective | specifier_indefinite, nbar) |
"does", "not", vbar_infinitive | vbar_finite;

vp_infinitive = copula_verb_infinitive , ["not"], (adjective |
specifier_indefinite, nbar) | "does", "not", vbar_infinitive | vbar_finite;

vp_to-infinitive = copula_verb_to-infinitive , ["not"],
(adjective | specifier_indefinite, nbar) | vbar_finite;

vbar_finite = transitive_verb_finite, np | intransitive_verb_finite;

Internship 23

vbar_infinitive = transitive_verb_infinitive, np | intransitive_verb_infinitive;
vbar_to-infinitive = transitive_verb_to-infinitive, np |
intransitive_verb_to-infinitive;

(* words, triggers and lexicon *)

optional_comma = "," | ;

iff = "iff" | "if", "and", "only", "if";

implies = "implies", ["that"];

identifier = {symbol};

noun = "set" | "element" | "number" | "integer" | "class" | "ordinal";

pronoun = "it";

number = "two" | "three" | "four" | "five" | "six" | "seven" | "eight" | "nine" |
"ten";

adjective = "empty" | "even" | "odd" | "prime" | "positive" | "transitive" |
"square" | "rational" | "irrational";

transitive_verb_finite = "contains" | "divides";
transitive_verb_infinitive = "contain" | "divide";
transitive_verb_to-infinitive = "to", ("contain" | "divide");

intransitive_verb_finite = "succeeds";
intransitive_verb_infinitive = "succeed";
intransitive_verb_to-infinitive = "to", "succeed";

copula_verb_finite = "is" | "are";
copula_verb_infinitive = "be";
copula_verb_to-infinitive = "to", "be";

specifier_indefinite = "a" | "an" | "some";
specifier_definite = "the";
specifier_one = "precisely", "one";
specifier_negative = "no";
specifier_universal = "every";

universal_quantifier_finite = "for", ("all" | "every");

24 John W. Schmid

existential_quantifier_finite = "there", ("is" | "are" | "exist" ["s"]);
existential_quantifier_infinitive = "there", ("be" | "exist");
existential_quantifier_to-infinitive = "there", "to", ("be" | "exist");

statement_trigger = "then" | "hence" | "therefore" | ["now"],"recall","that" |
"now",["observe", "that" | "this", ["in", "turn"], "implies"] |
conseq_trigger | conjunction_trigger;

conseq_trigger = "clearly" | "obviously" | "trivially" | "in", "particular" |
"observe", "that" | "together", "we", "have" | "furthermore" |
"this", ["in", turn"], "implies" | "finally" | "also" | ;

conjunction_trigger = "but" | "so" | ;

formula_trigger = "we", ("have" | "get") | ;

ass_trigger_finite = ["now"], ("assume" | "suppose"), ["that"] |
["now"], "assume", "for", "a", "contradicition", "that";

ass_trigger_infinitive = ["now"], "let";

ass_trigger_to-infinitive = ["now"], "consider";

variable_declaration_trigger = ["now"], ("consider" | "fix"), ["arbitrary"];

ass_closing_trigger = "thus";

case_closing_trigger = "in", ("all" | "both"), "cases", [","];

