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October 29, 2009

This is a reformulation of the first chapter of Landau’s Grundlagen der
Analysis in the Controlled Natural Language of Naproche. Talk about sets
is still avoided. One consequence of this is that Axiom 5 (the induction
axiom) cannot be formulated; instead we use an induction proof method.

Axiom 3: For every x, x′ 6= 1.

Axiom 4: If x′ = y′, then x = y.

Theorem 1: If x 6= y then x′ 6= y′.
Proof:
Assume that x 6= y and x′ = y′. Then by axiom 4, x = y. Qed.

Theorem 2: For all x x′ 6= x.
Proof:
By axiom 3, 1′ 6= 1. Suppose x′ 6= x. Then by theorem 1, (x′)′ 6= x′. Thus by induc-
tion, for all x x′ 6= x. Qed.

Theorem 3: If x 6= 1 then there is a u such that x = u′.
Proof:
If 1 6= 1 then there is a u such that 1 = u′.
Assume x′ 6= 1. If u = x then x′ = u′. So there is a u such that x′ = u′.
Thus by induction, if x 6= 1 then there is a u such that x = u′. Qed.

Definition 1:
Define + recursively:
x + 1 = x′.
x + y′ = (x + y)′.

Theorem 5: For all x, y, z, (x + y) + z = x + (y + z).
Proof:
Fix x, y.
(x + y) + 1 = (x + y)′ = x + y′ = x + (y + 1).
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Assume that (x+y)+z = x+(y+z). Then (x+y)+z′ = ((x+y)+z)′ = (x+(y+z))′ =
x + (y + z)′ = x + (y + z′). So (x + y) + z′ = x + (y + z′).
Thus by induction, for all z, (x + y) + z = x + (y + z). Qed.

Lemma 4a: For all y, 1 + y = y′.
Proof:
By definition 1, 1 + 1 = 1′.
Suppose 1 + y = y′. Then by definition 1, 1 + y′ = (1 + y)′. So 1 + y′ = (y′)′.
Thus by induction, for all y 1 + y = y′. Qed.

Lemma 4b: For all x,y, x′ + y = (x + y)′.
Proof:
Fix x. Then x′ + 1 = (x′)′ = (x + 1)′ by definition 1.
Suppose x′+y = (x+y)′. Then by definition 1 x′+y′ = (x′+y)′ = ((x+y)′)′ = (x′+y)′.
Thus by induction, for all y x′ + y = (x + y)′. Qed.

Theorem 6: For all y, x, x + y = y + x.
Proof:
Fix y. Then y + 1 = y′. By lemma 4a, 1 + y = y′. So 1 + y = y + 1.
Assume that x + y = y + x. Then (x + y)′ = (y + x)′ = y + x′. By lemma 4b,
x′ + y = (x + y)′, i.e. x′ + y = y + x′.
Thus by induction, for all x x + y = y + x. Qed.

Theorem 7: For all x, y, y 6= x + y.
Proof:
Fix x. Then 1 6= x′, i.e. 1 6= x + 1.
If y 6= x + y, then y′ 6= (x + y)′, i.e. y′ 6= x + y′.
So by induction, for all y y 6= x + y. Qed.

Theorem 8: If y 6= z, then for all x x + y 6= x + z.
Proof:
Assume y 6= z. Then y′ 6= z′, i.e. 1 + y 6= 1 + z.
If x + y 6= x + z, then (x + y)′ 6= (x + z)′, i.e. x′ + y 6= x′ + z.
So by induction, for all x x + y 6= x + z. Qed.

Theorem 9: Fix x, y. Then precisely one of the following cases holds:
Case 1: x = y.
Case 2: There is a u such that x = y + u.
Case 3: There is a v such that y = x + v.
Proof: Fix x, y. By theorem 7, case 1 and case 2 are inconsistent and case 1 and case
3 are inconsistent. Suppose case 2 and case 3 hold. Then x = y + u = (x + v) + u =
x + (v + u) = (v + u) + x.
Contradiction by theorem 7. Thus case 2 and case 3 are inconsistent. Thus for all x,
y, at most one of case 1, case 2 and case 3 holds.
Now fix x. Define M(y) iff case 1 or case 2 or case 3 holds.
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Suppose y = 1. By theorem 3, x = 1 = y or x = u′ = 1 + u = y + u. Thus M(1).
Suppose M(y). Then there are three cases:
Case 1: x = y.
Then y′ = y + 1 = x + 1. So M(y′).
Case 2: x = y + u.
If u = 1, then x = y + 1 = y′, i.e. M(y′).
By theorem 3, if u 6= 1, then u = w′ = 1+w, i.e. x = y+(1+w) = (y+1)+w = y′ +w,
i.e. M(y′).
Case 3: y = x + v.
Then y′ = (x + v)′ = x + v′, i.e. M(y′).
So in all cases M(y′).
Thus case 1 or case 2 or case 3 holds. Qed.

Definition 2:
Define x > y iff there is a u such that x = y + u.

Definition 3:
Define x < y iff there is a v such that y = x + v.

Theorem 10: Let x, y be given. Then precisely one of the following cases holds:
x = y. x > y. x < y.
Proof: By theorem 9, definition 2 and definition 3. Qed.

Theorem 11: x > y implies y < x.
Proof: For all x,y, we have x > y iff there is a u such that x = y + u. Furthermore, we
have y < x iff there is a u such that x = y+u. So for all x, y, x > y implies y < x. Qed.

Theorem 12: x < y implies y > x.
Proof: We have x < y iff there is a v such that y = x+ v. Furthermore, we have y > x
iff there is a v such that y = x + v. So x < y implies y > x. Qed.

Definition 4:
Define x ≥ y iff x > y or x = y.

Definition 5:
Define x ≤ y iff x < y or x = y.

Theorem 13: x ≥ y implies y ≤ x.
Proof:
By theorem 11. Qed.

Theorem 14: x ≤ y implies y ≥ x.
Proof:
By theorem 12. Qed.

3



Theorem 15: If x < y and y < z then x < z.
Proof: Assume x < y and y < z. Then there is a v such that y = x + v. Furthermore,
there is a u such that z = y + u. Then z = (x + v) + u = x + (v + u). So there is a w
such that z = x + w. So x < z. Qed.

Theorem 16: Let x, y, z be given. If x ≤ y and y < z or x < y and y ≤ z then x < z.
Proof:
By theorem 15. Qed.

Theorem 17: If x ≤ y and y ≤ z then x ≤ z.
Proof:
By theorem 16. Qed.

Theorem 18: For all x,y, x + y > x.
Proof: For all x,y we have x + y = x + y. Qed.

Theorem 19: Let x, y, z be given. Then x > y implies x + z > y + z, x = y implies
x + z = y + z and x < y implies x + z < y + z.
Proof:
Let z be given.
If x > y, then x = y +u, so x+z = (y +u)+z = (u+y)+z = u+(y +z) = (y +z)+u,
i.e. x + z > y + z.
If x = y then clearly x + z = y + z.
If x < y, then y > x, i.e. y + z > x + z, i.e. x + z < y + z. Qed.

Theorem 20: Let x, y, z be given. Then x + z > y + z implies x > y, x + z = y + z
implies x = y and x + z < y + z implies x < y.
Proof:
By theorem 19. Qed.

Theorem 21: If x > y and z > u then x + z > y + u.
Proof:
Assume x > y and z > u. Then by theorem 19 x + z > y + z. Then y + z = z + y >
u + y = y + u. So x + z > y + u. Qed.

Theorem 22: Let x, y, z, u be given. If x ≥ y and z > u or x > y and z ≥ u then
x + z > y + u.
Proof:
By theorem 19 and theorem 22. Qed.

Theorem 23: If x ≥ y and z ≥ u then x + z ≥ y + u.
Proof:
Trivial. Qed.

Theorem 24: For all x, we have x ≥ 1.
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Proof:
Fix x. Then x = 1 or x = u′ = u + 1 > 1. Qed.

Theorem 25: y > x implies y ≥ x + 1.
Proof:
Assume y > x. Then y = x + u. u ≥ 1, i.e. y ≥ x + 1. Qed.

Theorem 26: y < x + 1 implies y ≤ x.
Proof:
Assume for a contradiction that y < x + 1 and ¬y ≤ x. Then y > x. So by theorem
25 y ≥ x + 1. Contradiction. Qed.

Definition 6:
Define ∗ recursively:
x ∗ 1 = x.
x ∗ y′ = (x ∗ y) + x.

Lemma 28a: For all y, 1 ∗ y = y.
Proof:
By definition 6, 1 ∗ 1 = 1.
Suppose 1 ∗ y = y. Then by definition 6, 1 ∗ y′ = (1 ∗ y) + 1 = y + 1 = y′.
Thus by induction, for all y 1 ∗ y = y. Qed.

Lemma 28b: For all x,y, x′ ∗ y = (x ∗ y) + y.
Proof:
Fix x. Then x′ ∗ 1 = x′ = (x ∗ 1)′ = (x ∗ 1) + 1 by definition 6.
Suppose x′∗y = (x∗y)+y. Then by definition 6 x′∗y′ = (x′∗y)+x′ = ((x∗y)+y)+x′ =
(x∗y)+(y+x′) = (x∗y)+(x′+y) = (x∗y)+(x+y)′ = (x∗y)+(x+y′) = ((x∗y)+x)+y′ =
(x ∗ y′) + y′.
Thus by induction, for all y x′ ∗ y = (x ∗ y) + y. Qed.

Theorem 29: For all x, y, x ∗ y = y ∗ x.
Proof:
Fix y. Now y ∗ 1 = y. By lemma 28a, 1 ∗ y = y, so y ∗ 1 = 1 ∗ y.
Now suppose x ∗ y = y ∗ x. Then (x ∗ y) + y = (y ∗ x) + y = y ∗ x′. By lemma 28b,
x′ ∗ y = (x ∗ y) + y, so x′ ∗ y = y ∗ x′.
Thus by induction, for all x x ∗ y = y ∗ x. Qed.

Theorem 30: For all x, y, z, x ∗ (y + z) = (x ∗ y) + (x ∗ z).
Proof:
Fix x, y. x ∗ (y + 1) = x ∗ y′ = (x ∗ y) + x = (x ∗ y) + (x ∗ 1).
Now suppose x ∗ (y + z) = (x ∗ y) + (x ∗ z). Then x ∗ (y + z′) = x ∗ ((y + z)′) =
(x ∗ (y + z)) + x = ((x ∗ y) + (x ∗ z)) + x = (x ∗ y) + ((x ∗ z) + x) = (x ∗ y) + (x ∗ z′).
Thus by induction, for all z x ∗ (y + z) = (x ∗ y) + (x ∗ z). Qed.
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Theorem 31: For all x, y, z, (x ∗ y) ∗ z = x ∗ (y ∗ z).
Proof:
Fix x, y. Then (x ∗ y) ∗ 1 = x ∗ y = x ∗ (y ∗ 1).
Now suppose (x∗y)∗z = x∗(y∗z). Then by theorem 30, (x∗y)∗z′ = ((x∗y)∗z)+(x∗y) =
(x ∗ (y ∗ z)) + (x ∗ y) = x ∗ ((y ∗ z) + y) = x ∗ (y ∗ z′).
Thus by induction, for all z (x ∗ y) ∗ z = x ∗ (y ∗ z). Qed.

Theorem 32: For all z, x > y implies x ∗ z > y ∗ z, x = y implies x ∗ z = y ∗ z and
x < y implies x ∗ z < y ∗ z.
Proof:
Let z be given.
If x > y, then x = y + u, i.e. x ∗ z = (y + u) ∗ z = (y ∗ z) + (u ∗ z) > y ∗ z.
If x = y, then clearly x ∗ z = y ∗ z.
If x < y, then y > x, i.e. y ∗ z > x ∗ z, i.e. x ∗ z < y ∗ z. Qed.

Theorem 33: x ∗ z > y ∗ z implies x > y, x ∗ z = y ∗ z implies x = y and x ∗ z < y ∗ z
implies x < y.
Proof:
By theorem 32 and theorem 10. Qed.

Theorem 34: If x > y and z > u, then x ∗ z > y ∗ u.
Proof:
Suppose x > y and z > u. By theorem 32, x∗z > y ∗z and y ∗z = z ∗y > u∗y = y ∗u,
i.e. x ∗ z > y ∗ u. Qed.

Theorem 35: If x ≥ y, z > u or x > y, z ≥ u, then x ∗ z > y ∗ z.
Proof:
By theorem 32 and theorem 34. Qed.

Theorem 36: If x ≥ y and z ≥ u, then x ∗ z ≥ y ∗ u.
Proof:
By theorem 35. Qed.
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