Chapter 1 from Landau in Naproche

Merlin Carl, Marcos Cramer, Daniel Kühlwein

October 29, 2009

This is a reformulation of the first chapter of Landau's Grundlagen der Analysis in the Controlled Natural Language of Naproche. Talk about sets is still avoided. One consequence of this is that Axiom 5 (the induction axiom) cannot be formulated; instead we use an induction proof method.

Axiom 3: For every $x, x^{\prime} \neq 1$.
Axiom 4: If $x^{\prime}=y^{\prime}$, then $x=y$.
Theorem 1: If $x \neq y$ then $x^{\prime} \neq y^{\prime}$.
Proof:
Assume that $x \neq y$ and $x^{\prime}=y^{\prime}$. Then by axiom $4, x=y$. Qed.
Theorem 2: For all $x x^{\prime} \neq x$.
Proof:
By axiom $3,1^{\prime} \neq 1$. Suppose $x^{\prime} \neq x$. Then by theorem $1,\left(x^{\prime}\right)^{\prime} \neq x^{\prime}$. Thus by induction, for all $x x^{\prime} \neq x$. Qed.

Theorem 3: If $x \neq 1$ then there is a u such that $x=u^{\prime}$.
Proof:
If $1 \neq 1$ then there is a u such that $1=u^{\prime}$.
Assume $x^{\prime} \neq 1$. If $u=x$ then $x^{\prime}=u^{\prime}$. So there is a u such that $x^{\prime}=u^{\prime}$.
Thus by induction, if $x \neq 1$ then there is a u such that $x=u^{\prime}$. Qed.
Definition 1:
Define + recursively:
$x+1=x^{\prime}$.
$x+y^{\prime}=(x+y)^{\prime}$.
Theorem 5: For all $x, y, z,(x+y)+z=x+(y+z)$.
Proof:
Fix x, y.
$(x+y)+1=(x+y)^{\prime}=x+y^{\prime}=x+(y+1)$.

Assume that $(x+y)+z=x+(y+z)$. Then $(x+y)+z^{\prime}=((x+y)+z)^{\prime}=(x+(y+z))^{\prime}=$ $x+(y+z)^{\prime}=x+\left(y+z^{\prime}\right)$. So $(x+y)+z^{\prime}=x+\left(y+z^{\prime}\right)$.
Thus by induction, for all $z,(x+y)+z=x+(y+z)$. Qed.
Lemma 4a: For all $y, 1+y=y^{\prime}$.
Proof:
By definition $1,1+1=1^{\prime}$.
Suppose $1+y=y^{\prime}$. Then by definition $1,1+y^{\prime}=(1+y)^{\prime}$. So $1+y^{\prime}=\left(y^{\prime}\right)^{\prime}$.
Thus by induction, for all $y 1+y=y^{\prime}$. Qed.
Lemma 4b: For all $x, y, x^{\prime}+y=(x+y)^{\prime}$.
Proof:
Fix x. Then $x^{\prime}+1=\left(x^{\prime}\right)^{\prime}=(x+1)^{\prime}$ by definition 1 .
Suppose $x^{\prime}+y=(x+y)^{\prime}$. Then by definition $1 x^{\prime}+y^{\prime}=\left(x^{\prime}+y\right)^{\prime}=\left((x+y)^{\prime}\right)^{\prime}=\left(x^{\prime}+y\right)^{\prime}$. Thus by induction, for all $y x^{\prime}+y=(x+y)^{\prime}$. Qed.

Theorem 6: For all $y, x, x+y=y+x$.
Proof:
Fix y. Then $y+1=y^{\prime}$. By lemma $4 \mathrm{a}, 1+y=y^{\prime}$. So $1+y=y+1$.
Assume that $x+y=y+x$. Then $(x+y)^{\prime}=(y+x)^{\prime}=y+x^{\prime}$. By lemma 4b, $x^{\prime}+y=(x+y)^{\prime}$, i.e. $x^{\prime}+y=y+x^{\prime}$.
Thus by induction, for all $x x+y=y+x$. Qed.

Theorem 7: For all $x, y, y \neq x+y$.
Proof:
Fix x. Then $1 \neq x^{\prime}$, i.e. $1 \neq x+1$.
If $y \neq x+y$, then $y^{\prime} \neq(x+y)^{\prime}$, i.e. $y^{\prime} \neq x+y^{\prime}$.
So by induction, for all $y y \neq x+y$. Qed.
Theorem 8: If $y \neq z$, then for all $x x+y \neq x+z$.
Proof:
Assume $y \neq z$. Then $y^{\prime} \neq z^{\prime}$, i.e. $1+y \neq 1+z$.
If $x+y \neq x+z$, then $(x+y)^{\prime} \neq(x+z)^{\prime}$, i.e. $x^{\prime}+y \neq x^{\prime}+z$.
So by induction, for all $x x+y \neq x+z$. Qed.
Theorem 9: Fix x, y. Then precisely one of the following cases holds:
Case 1: $x=y$.
Case 2: There is a u such that $x=y+u$.
Case 3: There is a v such that $y=x+v$.
Proof: Fix x, y. By theorem 7, case 1 and case 2 are inconsistent and case 1 and case 3 are inconsistent. Suppose case 2 and case 3 hold. Then $x=y+u=(x+v)+u=$ $x+(v+u)=(v+u)+x$.
Contradiction by theorem 7. Thus case 2 and case 3 are inconsistent. Thus for all x, y, at most one of case 1 , case 2 and case 3 holds.
Now fix x. Define $M(y)$ iff case 1 or case 2 or case 3 holds.

Suppose $y=1$. By theorem $3, x=1=y$ or $x=u^{\prime}=1+u=y+u$. Thus $M(1)$.
Suppose $M(y)$. Then there are three cases:
Case 1: $x=y$.
Then $y^{\prime}=y+1=x+1$. So $M\left(y^{\prime}\right)$.
Case 2: $x=y+u$.
If $u=1$, then $x=y+1=y^{\prime}$, i.e. $M\left(y^{\prime}\right)$.
By theorem 3, if $u \neq 1$, then $u=w^{\prime}=1+w$, i.e. $x=y+(1+w)=(y+1)+w=y^{\prime}+w$, i.e. $M\left(y^{\prime}\right)$.

Case 3: $y=x+v$.
Then $y^{\prime}=(x+v)^{\prime}=x+v^{\prime}$, i.e. $M\left(y^{\prime}\right)$.
So in all cases $M\left(y^{\prime}\right)$.
Thus case 1 or case 2 or case 3 holds. Qed.
Definition 2:
Define $x>y$ iff there is a u such that $x=y+u$.
Definition 3:
Define $x<y$ iff there is a v such that $y=x+v$.
Theorem 10: Let x, y be given. Then precisely one of the following cases holds: $x=y . x>y . x<y$.
Proof: By theorem 9, definition 2 and definition 3. Qed.
Theorem 11: $x>y$ implies $y<x$.
Proof: For all x, y, we have $x>y$ iff there is a u such that $x=y+u$. Furthermore, we have $y<x$ iff there is a u such that $x=y+u$. So for all $x, y, x>y$ implies $y<x$. Qed.

Theorem 12: $x<y$ implies $y>x$.
Proof: We have $x<y$ iff there is a v such that $y=x+v$. Furthermore, we have $y>x$ iff there is a v such that $y=x+v$. So $x<y$ implies $y>x$. Qed.

Definition 4:
Define $x \geq y$ iff $x>y$ or $x=y$.
Definition 5:
Define $x \leq y$ iff $x<y$ or $x=y$.
Theorem 13: $x \geq y$ implies $y \leq x$.
Proof:
By theorem 11. Qed.
Theorem 14: $x \leq y$ implies $y \geq x$.
Proof:
By theorem 12. Qed.

Theorem 15: If $x<y$ and $y<z$ then $x<z$.
Proof: Assume $x<y$ and $y<z$. Then there is a v such that $y=x+v$. Furthermore, there is a u such that $z=y+u$. Then $z=(x+v)+u=x+(v+u)$. So there is a w such that $z=x+w$. So $x<z$. Qed.

Theorem 16: Let x, y, z be given. If $x \leq y$ and $y<z$ or $x<y$ and $y \leq z$ then $x<z$. Proof:
By theorem 15. Qed.
Theorem 17: If $x \leq y$ and $y \leq z$ then $x \leq z$.
Proof:
By theorem 16. Qed.
Theorem 18: For all $x, y, x+y>x$.
Proof: For all x, y we have $x+y=x+y$. Qed.
Theorem 19: Let x, y, z be given. Then $x>y$ implies $x+z>y+z, x=y$ implies $x+z=y+z$ and $x<y$ implies $x+z<y+z$.
Proof:
Let z be given.
If $x>y$, then $x=y+u$, so $x+z=(y+u)+z=(u+y)+z=u+(y+z)=(y+z)+u$, i.e. $x+z>y+z$.

If $x=y$ then clearly $x+z=y+z$.
If $x<y$, then $y>x$, i.e. $y+z>x+z$, i.e. $x+z<y+z$. Qed.
Theorem 20: Let x, y, z be given. Then $x+z>y+z$ implies $x>y, x+z=y+z$ implies $x=y$ and $x+z<y+z$ implies $x<y$.
Proof:
By theorem 19. Qed.
Theorem 21: If $x>y$ and $z>u$ then $x+z>y+u$.
Proof:
Assume $x>y$ and $z>u$. Then by theorem $19 x+z>y+z$. Then $y+z=z+y>$ $u+y=y+u$. So $x+z>y+u$. Qed.

Theorem 22: Let x, y, z, u be given. If $x \geq y$ and $z>u$ or $x>y$ and $z \geq u$ then $x+z>y+u$.
Proof:
By theorem 19 and theorem 22. Qed.

Theorem 23: If $x \geq y$ and $z \geq u$ then $x+z \geq y+u$.
Proof:
Trivial. Qed.
Theorem 24: For all x, we have $x \geq 1$.

Proof:
Fix x. Then $x=1$ or $x=u^{\prime}=u+1>1$. Qed.
Theorem 25: $y>x$ implies $y \geq x+1$.
Proof:
Assume $y>x$. Then $y=x+u . u \geq 1$, i.e. $y \geq x+1$. Qed.
Theorem 26: $y<x+1$ implies $y \leq x$.
Proof:
Assume for a contradiction that $y<x+1$ and $\neg y \leq x$. Then $y>x$. So by theorem $25 y \geq x+1$. Contradiction. Qed.

Definition 6:
Define * recursively:
$x * 1=x$.
$x * y^{\prime}=(x * y)+x$.
Lemma 28a: For all $y, 1 * y=y$.
Proof:
By definition $6,1 * 1=1$.
Suppose $1 * y=y$. Then by definition $6,1 * y^{\prime}=(1 * y)+1=y+1=y^{\prime}$.
Thus by induction, for all $y 1 * y=y$. Qed.
Lemma 28b: For all $x, y, x^{\prime} * y=(x * y)+y$.
Proof:
Fix x. Then $x^{\prime} * 1=x^{\prime}=(x * 1)^{\prime}=(x * 1)+1$ by definition 6 .
Suppose $x^{\prime} * y=(x * y)+y$. Then by definition $6 x^{\prime} * y^{\prime}=\left(x^{\prime} * y\right)+x^{\prime}=((x * y)+y)+x^{\prime}=$ $(x * y)+\left(y+x^{\prime}\right)=(x * y)+\left(x^{\prime}+y\right)=(x * y)+(x+y)^{\prime}=(x * y)+\left(x+y^{\prime}\right)=((x * y)+x)+y^{\prime}=$ $\left(x * y^{\prime}\right)+y^{\prime}$.
Thus by induction, for all $y x^{\prime} * y=(x * y)+y$. Qed.
Theorem 29: For all $x, y, x * y=y * x$.
Proof:
Fix y. Now $y * 1=y$. By lemma 28a, $1 * y=y$, so $y * 1=1 * y$.
Now suppose $x * y=y * x$. Then $(x * y)+y=(y * x)+y=y * x^{\prime}$. By lemma 28b, $x^{\prime} * y=(x * y)+y$, so $x^{\prime} * y=y * x^{\prime}$.
Thus by induction, for all $x x * y=y * x$. Qed.
Theorem 30: For all $x, y, z, x *(y+z)=(x * y)+(x * z)$.
Proof:
Fix $x, y . x *(y+1)=x * y^{\prime}=(x * y)+x=(x * y)+(x * 1)$.
Now suppose $x *(y+z)=(x * y)+(x * z)$. Then $x *\left(y+z^{\prime}\right)=x *\left((y+z)^{\prime}\right)=$ $(x *(y+z))+x=((x * y)+(x * z))+x=(x * y)+((x * z)+x)=(x * y)+\left(x * z^{\prime}\right)$. Thus by induction, for all $z x *(y+z)=(x * y)+(x * z)$. Qed.

Theorem 31: For all $x, y, z,(x * y) * z=x *(y * z)$.
Proof:
Fix x, y. Then $(x * y) * 1=x * y=x *(y * 1)$.
Now suppose $(x * y) * z=x *(y * z)$. Then by theorem 30, $(x * y) * z^{\prime}=((x * y) * z)+(x * y)=$ $(x *(y * z))+(x * y)=x *((y * z)+y)=x *\left(y * z^{\prime}\right)$.
Thus by induction, for all $z(x * y) * z=x *(y * z)$. Qed.
Theorem 32: For all $z, x>y$ implies $x * z>y * z, x=y$ implies $x * z=y * z$ and $x<y$ implies $x * z<y * z$.
Proof:
Let z be given.
If $x>y$, then $x=y+u$, i.e. $x * z=(y+u) * z=(y * z)+(u * z)>y * z$.
If $x=y$, then clearly $x * z=y * z$.
If $x<y$, then $y>x$, i.e. $y * z>x * z$, i.e. $x * z<y * z$. Qed.
Theorem 33: $x * z>y * z$ implies $x>y, x * z=y * z$ implies $x=y$ and $x * z<y * z$ implies $x<y$.
Proof:
By theorem 32 and theorem 10. Qed.
Theorem 34: If $x>y$ and $z>u$, then $x * z>y * u$.
Proof:
Suppose $x>y$ and $z>u$. By theorem 32, $x * z>y * z$ and $y * z=z * y>u * y=y * u$, i.e. $x * z>y * u$. Qed.

Theorem 35: If $x \geq y, z>u$ or $x>y, z \geq u$, then $x * z>y * z$.
Proof:
By theorem 32 and theorem 34. Qed.
Theorem 36: If $x \geq y$ and $z \geq u$, then $x * z \geq y * u$.
Proof:
By theorem 35. Qed.

