Chapter 1 from Landau in Naproche

Merlin Carl, Marcos Cramer, Daniel Kühlwein

October 29, 2009

This is a reformulation of the first chapter of Landau's *Grundlagen der Analysis* in the Controlled Natural Language of Naproche. Talk about sets is still avoided. One consequence of this is that Axiom 5 (the induction axiom) cannot be formulated; instead we use an induction proof method.

Axiom 3: For every $x, x' \neq 1$.

Axiom 4: If x' = y', then x = y.

Theorem 1: If $x \neq y$ then $x' \neq y'$. Proof: Assume that $x \neq y$ and x' = y'. Then by axiom 4, x = y. Qed.

Theorem 2: For all $x \ x' \neq x$. Proof: By axiom 3, $1' \neq 1$. Suppose $x' \neq x$. Then by theorem 1, $(x')' \neq x'$. Thus by induction, for all $x \ x' \neq x$. Qed.

Theorem 3: If $x \neq 1$ then there is a u such that x = u'. Proof: If $1 \neq 1$ then there is a u such that 1 = u'. Assume $x' \neq 1$. If u = x then x' = u'. So there is a u such that x' = u'. Thus by induction, if $x \neq 1$ then there is a u such that x = u'. Qed.

Definition 1: Define + recursively: x + 1 = x'. x + y' = (x + y)'.

Theorem 5: For all x, y, z, (x + y) + z = x + (y + z). Proof: Fix x, y. (x + y) + 1 = (x + y)' = x + y' = x + (y + 1). x + (y + z)' = x + (y + z'). So (x + y) + z' = x + (y + z'). Thus by induction, for all z, (x + y) + z = x + (y + z). Qed. Lemma 4a: For all y, 1 + y = y'. Proof: By definition 1, 1 + 1 = 1'. Suppose 1 + y = y'. Then by definition 1, 1 + y' = (1 + y)'. So 1 + y' = (y')'. Thus by induction, for all $y \ 1 + y = y'$. Qed. Lemma 4b: For all x, y, x' + y = (x + y)'. Proof: Fix x. Then x' + 1 = (x')' = (x+1)' by definition 1. Suppose x'+y = (x+y)'. Then by definition 1 x'+y' = (x'+y)' = ((x+y)')' = (x'+y)'. Thus by induction, for all y x' + y = (x + y)'. Qed. Theorem 6: For all y, x, x + y = y + x. Proof: Fix y. Then y + 1 = y'. By lemma 4a, 1 + y = y'. So 1 + y = y + 1. Assume that x + y = y + x. Then (x + y)' = (y + x)' = y + x'. By lemma 4b, x' + y = (x + y)', i.e. x' + y = y + x'. Thus by induction, for all x x + y = y + x. Qed. Theorem 7: For all $x, y, y \neq x + y$. Proof: Fix x. Then $1 \neq x'$, i.e. $1 \neq x + 1$. If $y \neq x + y$, then $y' \neq (x + y)'$, i.e. $y' \neq x + y'$. So by induction, for all $y \ y \neq x + y$. Qed.

Assume that (x+y)+z = x+(y+z). Then (x+y)+z' = ((x+y)+z)' = (x+(y+z))' = (x+(y+

Theorem 8: If $y \neq z$, then for all $x \ x + y \neq x + z$. Proof: Assume $y \neq z$. Then $y' \neq z'$, i.e. $1 + y \neq 1 + z$. If $x + y \neq x + z$, then $(x + y)' \neq (x + z)'$, i.e. $x' + y \neq x' + z$. So by induction, for all $x \ x + y \neq x + z$. Qed.

Theorem 9: Fix x, y. Then precisely one of the following cases holds: Case 1: x = y.

Case 2: There is a u such that x = y + u.

Case 3: There is a v such that y = x + v.

Proof: Fix x, y. By theorem 7, case 1 and case 2 are inconsistent and case 1 and case 3 are inconsistent. Suppose case 2 and case 3 hold. Then x = y + u = (x + v) + u = x + (v + u) = (v + u) + x.

Contradiction by theorem 7. Thus case 2 and case 3 are inconsistent. Thus for all x, y, at most one of case 1, case 2 and case 3 holds.

Now fix x. Define M(y) iff case 1 or case 2 or case 3 holds.

Suppose y = 1. By theorem 3, x = 1 = y or x = u' = 1 + u = y + u. Thus M(1). Suppose M(y). Then there are three cases: Case 1: x = y. Then y' = y + 1 = x + 1. So M(y'). Case 2: x = y + u. If u = 1, then x = y + 1 = y', i.e. M(y'). By theorem 3, if $u \neq 1$, then u = w' = 1 + w, i.e. x = y + (1 + w) = (y + 1) + w = y' + w, i.e. M(y'). Case 3: y = x + v. Then y' = (x + v)' = x + v', i.e. M(y'). So in all cases M(y'). Thus case 1 or case 2 or case 3 holds. Qed.

Definition 2: Define x > y iff there is a u such that x = y + u.

Definition 3: Define x < y iff there is a v such that y = x + v.

Theorem 10: Let x, y be given. Then precisely one of the following cases holds: x = y. x > y. x < y. Proof: By theorem 9, definition 2 and definition 3. Qed.

Theorem 11: x > y implies y < x. Proof: For all x, y, we have x > y iff there is a u such that x = y + u. Furthermore, we have y < x iff there is a u such that x = y + u. So for all x, y, x > y implies y < x. Qed.

Theorem 12: x < y implies y > x. Proof: We have x < y iff there is a v such that y = x + v. Furthermore, we have y > x iff there is a v such that y = x + v. So x < y implies y > x. Qed.

Definition 4: Define $x \ge y$ iff x > y or x = y.

Definition 5: Define $x \le y$ iff x < y or x = y.

Theorem 13: $x \ge y$ implies $y \le x$. Proof: By theorem 11. Qed.

Theorem 14: $x \leq y$ implies $y \geq x$. Proof: By theorem 12. Qed.

Theorem 15: If x < y and y < z then x < z. Proof: Assume x < y and y < z. Then there is a v such that y = x + v. Furthermore, there is a u such that z = y + u. Then z = (x + v) + u = x + (v + u). So there is a w such that z = x + w. So x < z. Qed. Theorem 16: Let x, y, z be given. If $x \leq y$ and y < z or x < y and $y \leq z$ then x < z. Proof: By theorem 15. Qed. Theorem 17: If $x \leq y$ and $y \leq z$ then $x \leq z$. Proof: By theorem 16. Qed. Theorem 18: For all x, y, x + y > x. Proof: For all x, y we have x + y = x + y. Qed. Theorem 19: Let x, y, z be given. Then x > y implies x + z > y + z, x = y implies x + z = y + z and x < y implies x + z < y + z. Proof: Let z be given. If x > y, then x = y + u, so x + z = (y + u) + z = (u + y) + z = u + (y + z) = (y + z) + u, i.e. x + z > y + z. If x = y then clearly x + z = y + z. If x < y, then y > x, i.e. y + z > x + z, i.e. x + z < y + z. Qed. Theorem 20: Let x, y, z be given. Then x + z > y + z implies x > y, x + z = y + zimplies x = y and x + z < y + z implies x < y. Proof: By theorem 19. Qed. Theorem 21: If x > y and z > u then x + z > y + u. Proof: Assume x > y and z > u. Then by theorem 19 x + z > y + z. Then y + z = z + y > zu + y = y + u. So x + z > y + u. Qed. Theorem 22: Let x, y, z, u be given. If $x \ge y$ and z > u or x > y and $z \ge u$ then x + z > y + u.Proof: By theorem 19 and theorem 22. Qed. Theorem 23: If $x \ge y$ and $z \ge u$ then $x + z \ge y + u$. Proof: Trivial. Qed. Theorem 24: For all x, we have $x \ge 1$.

Proof: Fix x. Then x = 1 or x = u' = u + 1 > 1. Qed. Theorem 25: y > x implies $y \ge x + 1$. Proof: Assume y > x. Then y = x + u. $u \ge 1$, i.e. $y \ge x + 1$. Qed. Theorem 26: y < x + 1 implies $y \le x$. Proof: Assume for a contradiction that y < x + 1 and $\neg y \leq x$. Then y > x. So by theorem 25 $y \ge x + 1$. Contradiction. Qed. Definition 6: Define * recursively: x * 1 = x.x * y' = (x * y) + x.Lemma 28a: For all y, 1 * y = y. Proof: By definition 6, 1 * 1 = 1. Suppose 1 * y = y. Then by definition 6, 1 * y' = (1 * y) + 1 = y + 1 = y'. Thus by induction, for all $y \ 1 * y = y$. Qed. Lemma 28b: For all x,y, x' * y = (x * y) + y. Proof: Fix x. Then x' * 1 = x' = (x * 1)' = (x * 1) + 1 by definition 6.

Suppose x' * y = (x * y) + y. Then by definition 6x' * y' = (x' * y) + x' = ((x * y) + y) + x' = (x * y) + (y + x') = (x * y) + (x' + y) = (x * y) + (x + y') = ((x * y) + x) + y' = (x * y') + y'. Thus by induction, for all y x' * y = (x * y) + y. Qed.

Theorem 29: For all x, y, x * y = y * x. Proof: Fix y. Now y * 1 = y. By lemma 28a, 1 * y = y, so y * 1 = 1 * y. Now suppose x * y = y * x. Then (x * y) + y = (y * x) + y = y * x'. By lemma 28b, x' * y = (x * y) + y, so x' * y = y * x'. Thus by induction, for all x x * y = y * x. Qed.

Theorem 30: For all x, y, z, x * (y + z) = (x * y) + (x * z). Proof: Fix x, y, x * (y + 1) = x * y' = (x * y) + x = (x * y) + (x * 1). Now suppose x * (y + z) = (x * y) + (x * z). Then x * (y + z') = x * ((y + z)') = (x * (y + z)) + x = ((x * y) + (x * z)) + x = (x * y) + ((x * z) + x) = (x * y) + (x * z'). Thus by induction, for all z x * (y + z) = (x * y) + (x * z). Qed. Theorem 31: For all x, y, z, (x * y) * z = x * (y * z). Proof: Fix x, y. Then (x * y) * 1 = x * y = x * (y * 1). Now suppose (x*y)*z = x*(y*z). Then by theorem 30, (x*y)*z' = ((x*y)*z)+(x*y) = (x * (y * z)) + (x * y) = x * ((y * z) + y) = x * (y * z'). Thus by induction, for all z (x * y) * z = x * (y * z). Qed.

Theorem 32: For all z, x > y implies x * z > y * z, x = y implies x * z = y * z and x < y implies x * z < y * z. Proof: Let z be given. If x > y, then x = y + u, i.e. x * z = (y + u) * z = (y * z) + (u * z) > y * z. If x = y, then clearly x * z = y * z. If x < y, then y > x, i.e. y * z > x * z, i.e. x * z < y * z. Qed.

Theorem 33: x * z > y * z implies x > y, x * z = y * z implies x = y and x * z < y * z implies x < y. Proof: By theorem 32 and theorem 10. Qed.

Theorem 34: If x > y and z > u, then x * z > y * u. Proof: Suppose x > y and z > u. By theorem 32, x * z > y * z and y * z = z * y > u * y = y * u, i.e. x * z > y * u. Qed.

Theorem 35: If $x \ge y$, z > u or x > y, $z \ge u$, then x * z > y * z. Proof: By theorem 32 and theorem 34. Qed.

Theorem 36: If $x \ge y$ and $z \ge u$, then $x * z \ge y * u$. Proof: By theorem 35. Qed.