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Abstract

Was ist ein mathematischer Beweis? Ein mathematischer Beweis ist ein Text,

der den Leser von der Richtigkeit einer Aussage überzeugen soll. Diese oder eine

vergleichbare Aussage werden viele Personen, fachfremde und Mathematiker, als

Antwort geben. Aber wie genau sieht solch ein “Beweistext” aus? Nach welchen

Regeln ist er aufgebaut? Betrachtet man mathematische Beweise als eine Mischung

von natürlicher Sprache und mathematischen Zeichen, wie man sie in mathematis-

chen Lehrbüchern und Zeitschriften findet, so sind diese Fragen schwer zu beant-

worten. Abgesehen von solchen “normalen” Beweisen gibt es jedoch noch eine

weitere Art von Beweisen: formale Beweise. Für diese ist es leicht eine Antwort zu

finden: Das zugehörige Kalkül definiert, was erlaubt ist und was nicht. Alfred

Whitehead und Bertrand Russell haben mit ihrem Werk Principia Math-

ematica [33] gezeigt, dass es theoretisch möglich ist, Mathematik rein formal zu

betreiben. In den Principia Mathematica werden zwar nur die Grundlagen der

Mathematik formalisiert, jedoch kann man daraus ableiten, dass es auch für den

Rest möglich ist. Hierauf aufbauend kann man nun die zuvor genannten “nor-

malen” Beweise als Abkürzungen für formale Beweise betrachten. Unter dieser

Annahme wäre die einzige Regel für einen “normalen” Beweis, dass er eindeutig

in einen formalen Beweis übersetzbar ist.

Inwieweit ist es möglich, “normale” Beweise (automatisch) in formale Be-

weise zu übersetzen? In welchem Ausmaß sind solche Übersetzungen eindeutig?

Was ist die Sprache der Mathematik? Unter der Leitung von Peter Koepke

(Mathematik, Universität Bonn) und Bernhard Schröder (Linguistik, Univer-

sität Duisburg-Essen) untersucht das Naproche-Projekt (NAtural language PROof

CHEcking) diese und ähnliche Fragestellungen.

Als praktische Umsetzung dieser Überlegungen wird das Naproche-System, ein

Computerprogramm, das “normale” Beweise auf logische Korrektheit überprüfen

soll, entwickelt. In der aktuellen Version unterteilt sich das Naproche-System in

drei Hauptmodule: Die Eingabeverarbeitung, die linguistische Verarbeitung und

die logische Überprüfung. Ziel dieses Diplomprojektes war die Entwicklung und

Implementierung des dritten Moduls, der logischen Überprüfung.

Nach der linguistischen Verarbeitung ist ein Eingabetext in eine so genan-

nte Beweisrepräsentationsstruktur (Proof Representation Structure, PRS) trans-

formiert worden. Die logische Überprüfung muss entscheiden, ob die dem Einga-

betext entsprechende Beweisrepräsentationsstruktur logisch korrekt ist oder nicht.

Man benötigt also ein Kalkül für Beweisrepräsentationsstrukturen. Diese Diplo-

marbeit beschreibt solch ein Kalkül. Sie unterteilt sich in fünf Kapitel:

Kapitel 1 gibt eine Einführung in diese Arbeit. Das Naproche Projekt wird

beschrieben und für Naproche wichtige Arbeiten werden vorgestellt.

Kapitel 2 behandelt die Grundlagen der Logik erster Stufe. Zuerst werden eine

Sprache erster Ordnung, sowie die dazugehörigen Terme und Formeln definiert.

Danach wird die Semantik erklärt, und ein korrektes und vollständiges Sequen-

zenkalkül eingeführt.

In Kapitel 3 wird das Naproche-System ausführlicher behandelt. Das Kapi-

tel beginnt mit der Beschreibung der groben Struktur des Naproche-Systems.

Danach wird die momentan zulässige Eingabesprache definiert. Eine Einführung
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in Diskursrepräsentationstheorie (Discourse Representation Theory, DRT), auf der

die Linguistik des Naproche-Systems basiert, und Diskursrepräsentationsstrukturen

(Discourse Representation Structures, DRS) wird gegeben. Daraufhin werden Be-

weisrepräsentationsstrukturen definiert. Automatische Beweiser (Automated The-

orem Prover, ATP) und das TPTP-Projekt, welche für die logische Überprüfung

der Beweisrepräsentationsstrukturen benutzt werden, werden vorgestellt und ihr

Einsatz im Naproche-System erklärt. Das Kapitel schließt mit dem Burali-

Forti-Paradoxon als einem Beispiel für ein nicht-triviales Theorem, das von dem

aktuellen Naproche-System vollständig überprüft werden kann, ab.

Kapitel 4 definiert das Naproche-Kalkül für Beweisrepräsentationsstrukturen

und zeigt dessen Vollständigkeit und Korrektheit: Nach einigen Lemmas wird

zunächst das Formelbild (Formula Image) einer Beweisrepräsentationsstruktur def-

iniert. Dies ist eine Abbildung, welche jeder Beweisrepräsentationsstruktur eine

Sequenz von Formeln erster Stufe zuordnet. Danach wird das eigentliche Kalkül

in Abhängigkeit von einem vorgegebenen Kalkül P definiert. Es folgt eine Betra-

chtung des Zusammenhangs zwischen der Eingabesprache des Naproche-Systems

und Beweisrepräsentationsstrukturen, bevor das neu definierte Kalkül mit dem

Quellcode des Naproche-Systems verglichen wird. Es wird gezeigt, dass die Ableit-

barkeit einer Beweisrepräsentationsstruktur in dem Kalkül äquivalent dazu ist,

dass das idealisierte Naproche-System die Beweisrepräsentationsstruktur akzep-

tiert. Zuletzt wird die Korrektheit und Vollständigkeit des Naproche-Kalküls

gezeigt. Insbesondere werden folgende Theoreme bewiesen:

Theorem. Vollständigkeit des Naproche-Kalküls

Ist P ein vollständiges Kalkül, dann ist das Naproche-Kalkül vollständig. D.h.

falls Γ |= ϕ, dann ist die Beweisrepräsentationsstruktur, die nur die Annahmen-

Bedingung mit der Annahme
∧

Γ und der Folgerung ϕ enthält, Naproche-akzeptiert.

Theorem. Korrektheit des Naproche-Kalküls

Ist P ein korrektes Kalkül, dann ist das Naproche-Kalkül korrekt. D.h. falls A eine

Naproche-akzeptierte Beweisrepräsentationsstruktur ohne Definitions-Bedingungen

ist, dann ist das Formelbild FI(A) in dem Sequenzenkalkül ableitbar.

Der Beweis erfolgt durch eine doppelte Induktion über die Tiefe der Beweis-

repräsentationsstruktur und die Anzahl ihrer Bedingungen. Im Induktionsschritt

werden die vorherigen Definitionen, das Kalkül für Beweisrepräsentationsstrukturen

und deren Formelbild, zusammen mit dem Sequenzenkalkül aus Kapitel 2 benutzt.

Im letzten Kapitel werden zunächst einige Probleme des Naproche-Systems

aufgezeigt. Der Einfluss des automatischen Beweisers und der Eingabesprache wird

näher betrachtet. Danach werden mögliche Verbesserungen an dem aktuellen Pro-

gramm besprochen. Insbesondere werden Ideen zur Verbesserung der Benutzer-

freundlichkeit und der Beweisfähigkeit genannt. Zuletzt wird kurz die geplante

zukünftige Zusammenarbeit mit dem VeriMathDoc Projekt in Saarbrücken und

Bremen beschrieben.
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Chapter 1

Introduction

Considering that mathematics has a reputation of being an exact science, it is

interesting to note that one of the main concepts of mathematics, the mathemat-

ical proof, is somewhat vaguely defined. What exactly is a mathematical proof?

Firstly, one can distinguish between two kinds of mathematical proofs: Formal

and informal proofs.

An informal proof is a mixture of natural language and mathematical sym-

bols. Most proofs in mathematical textbooks and journals are informal. Informal

proofs are subjective. People may disagree about whether a text is an informal

proof or not.

Formal proofs are finite derivations in a calculus. They are sequences of

mathematical symbols and do not contain natural language elements. Given a

calculus, there is a definite answer of whether or not a text is a formal proof. In

the Principia Mathematica [33], Alfred Whitehead and Bertrand Russell

formally proved many theorems which were considered the foundation of mathe-

matics. Since then, most mathematicians agree that it would be possible, even if

extremely tedious, to find a formal proof for every theorem. With this in mind,

one could interpret informal proofs as abbreviations for formal proofs.

1.1 The Naproche Project

Naproche, short for NAtural language PROof CHEcking, is a project that was

founded by Bernhard Schröder (Linguistics, University of Duisburg-Essen)

and Peter Koepke (Mathematical Institute, University of Bonn) to study in-

formal mathematical proofs. Among the questions we ask ourselves are: “Is it

possible to (automatically) translate an informal into a formal proof?”, “Can

such a translation be unambiguous ?”, and “What is the syntax and semantics

of informal proofs?”.
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As an answer to these questions, we develop the Naproche system, a com-

puter program that aims to check proofs that are written in a controlled natural

language, the Naproche language, for correctness. Even though the Naproche

system and the Naproche language are quite new, we could already get some re-

sults. The Naproche language is strong enough to formulate proofs for non-trivial

theorems like the Burali-Forti paradox (See 3.4), and the proof from section

3.4 can be checked successfully by the Naproche system. Eventually, we hope

that the Naproche system can be used to automatically create translations from

informal into formal proofs.

1.2 This Thesis

In its current version, the Naproche system is divided into three main modules:

the input module, the linguistic module, and the logic module. The goal of this

diploma project was the development and implementation∗ of the logic module.

More specifically, the first two modules transform the input text into a Proof

Representation Structure. The logic module must decide if the Proof Represen-

tation Structure is correct. Thus, the logic module is the implementation of a

calculus for Proof Representation Structures. This thesis describes the calculus

and shows its completeness and correctness.

The structure of the thesis is as follows: Chapter 2 introduces the notions

and definitions of first order logic which will be used in the remainder of the

text. The Naproche system is then described in greater detail in chapter 3.

Chapter 4 defines the calculus for Proof Representation Structures, and shows its

correctness and completeness. The final chapter takes a look at the limitations

of the concept of the Naproche system, shows some problems which were found

during the development of the last version, and presents the plan for the near

future of Naproche.

1.3 Related Work

To the authors knowledge, there are two groups which are very closely related

to Naproche. The VeriMathDoc project in Saarbrücken [31], [32], and the SAD

team in Kyiv [15]. They all share the concept of a controlled natural language as

input, linguistic parsing and automated proof checking.

Claus Zinn wrote his doctoral thesis [34] about the natural language of

mathematics, but unfortunately his ideas were not developed any further.

The probably historically most prominent representative of automated proof

verification is the Mizar system [16]. It was started in 1973 by Andrzej Try-

∗ The implementation was done between April and June 2008 by Dörthe Arndt and the

author, with additional help of the trainees Bhoomija Ranjan and Shruti Gupta.
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bulec, and since then an impressive library of mathematical texts written in the

Mizar language, as well as a journal, Formalized Mathematics, in which these

articles are published, were created.

Automated theorem provers are used in the checking process of the Naproche-

System. The best starting point for information in this area is arguably the TPTP

homepage [23]. We should also mention the proof assistants COQ [5] and Isabelle

[18].

On the linguistic side, the Naproche system is based upon Discourse Repre-

sentation Theory, in particular the work of Hans Kamp and Uwe Reyle [10].

For our needs, we extended the original Discourse Representation Theory and

defined Proof Representation Structures. Nickolay Kolev wrote his Magister

thesis about this topic [13].

Norbert Fuchs created Attempto Controlled English [21], a controlled nat-

ural language which reads like normal English and has an unambiguous transla-

tion into first order logic.
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Chapter 2

Terms, Formulas and Calculi

This chapter briefly introduces the basic notions and definitions of first order

logic which will be used in the remainder of this thesis. We take a look at the

syntax and semantics of first order languages, and define a complete and correct

sequent calculus.

If you are not already familiar with first order logic, then you might want to

pick up an introductory logic book for additional and more detailed information.

This chapter is based upon Ebbinghaus’ textbook [3] and Peter Koepke’s

lecture notes [11]. Most importantly, the sequent calculus is taken from [11].

2.1 First Order Language

We give a brief recapitulation of the basic definitions of a first order language.

Definition 2.1.1. Alphabet and Words over an Alphabet

An alphabet A is a non-empty set of symbols. A finite sequence of elements of

A is called a word of the alphabet A. A∗ is defined as the set of all words over

an alphabet A.

Definition 2.1.2. Alphabet of a First Order Language

The alphabet of a first order language L contains the following symbols:� v0,v1,.. , a countably infinite number of variables� ¬,→,⊥, logical symbols with the usual meaning� ∀, universal quantifier� ≡, equality� ), (, brackets



6 CHAPTER 2. TERMS, FORMULAS AND CALCULI� for each n ∈ N a possibly empty set of n-ary relation symbols� for each n ∈ N a possibly empty set of n-ary function symbols� a possibly empty set of constant symbols

Definition 2.1.3. Terms of a First Order Language

Let A be an alphabet of a first order language L. The set of terms of L is the

minimal subset T of A∗ for which the following holds:� Each variable is an element of T .� Each constant of A is an element of T .� If t1, .., tn are elements of T , and f is an n-ary function symbol in A, then

ft1..tn is an element of T .

The elements of T are called L-terms.

Definition 2.1.4. First Order Formulas

Let A be an alphabet of a first order language L. The set of formulas of L is the

minimal subset F of A∗ for which the following holds:� ⊥ is an element of F .� For L-terms t1, t2, (t1 ≡ t2) is an element of F .� Let t1, ..tn be L-terms and let R be an n-ary relation symbol in A. Then

Rt1..tn is an element of F .� If ϕ is an element of F , then ¬ϕ is an element of F .� If ϕ and ψ are elements of F , then (ϕ→ ψ) is an element of F .� If ϕ is an element of F , and x is a variable, then ∀xϕ is an element of F .

The elements of F are called L-formulas.

Definition 2.1.5. Variables of a Term

Let L be a first order language. Let x be a variable of L, c be a constant of L,

and t1, .., tn be L-terms. We define the function var for terms:

var (x) = {x}

var(c) = ∅

var(ft1, .., tn) = var(t1) ∪ .. ∪ var (tn)
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Definition 2.1.6. Free Variables of a Formula

Let L be a first order language. We define the free variables of an L-formula

inductively:

free(⊥) = ∅

free((t1 = t2)) = var (t1) ∪ var(t2)

free(Rt1...tn) = var (t1) ∪ ... ∪ var(tn)

free(¬ϕ) = free(ϕ)

free((ϕ → ψ)) = free(ϕ) ∪ free(ψ)

free(∀xϕ) = free(ϕ)\{x}

Definition 2.1.7. Substitution in a Term

Let L be a first order language, t, u be L-terms, and x be a variable of L. We

define the substitution tu
x

of u for x recursively:� For all variables y 6= x, y u
x

= y.� xu
x

= u.� cu
x

= c for all constants c.� (ft1..tn)u
x

= ft1
u
x
...tn

u
x

for all n-ary function symbols f .

Definition 2.1.8. Substitution in a Formula

Let L be a first order language, ϕ be an L-formula, x be a variable of L and t be

an L-term. We define the substitution ϕ t
x

of t for x recursively:� ⊥ t
x

= ⊥.� For all L-terms t1, t2, (t1 ≡ t2)
t
x

= (t1
t
x
≡ t2

t
x
).� For all L-terms t1, ..tn and n-ary relation symbolsR, (Rt1..tn) t

x
= Rt1

t
x
...tn

t
x
.� For all L-formulas ψ, (¬ψ) t

x
= ¬(ψ t

x
).� For all L-formulas ψ1, ψ2, (ψ1 → ψ2)
t
x

= (ψ1
t
x
→ ψ2

t
x
)� For all L-formulas ψ, if x = y, then (∀yψ) t

x
= ∀yψ.� For all L-formulas ψ, if x 6= y, then let u be a variable which does not occur

in ∀yψ, x and t. We define (∀yψ) t
x

= ∀u((ψ u
y
) t

x
).

The reader might miss the logical symbols ⊤,∧,∨,↔ and ∃, which can often

be found in textbooks. We will use them as syntactic sugar in our formulas.

Their use can greatly increase the readability of longer formulas.

Definition 2.1.9. Abbreviated Formulas

We define the abbreviations



8 CHAPTER 2. TERMS, FORMULAS AND CALCULI� ⊤ for ¬⊥.� ϕ ∨ ψ for ¬ϕ→ ψ.� ϕ ∧ ψ for ¬(ϕ→ ¬ψ).� ϕ↔ ψ for (ϕ→ ψ) ∧ (ψ → ϕ).� ∃x ϕ for ¬∀x ¬ϕ.

2.2 The Semantics of First Order Languages

By themselves, first order formulas are just a special kind of strings of symbols,

without any particular meaning. In order to make any sense of a formula, we

need to interpret it in a model. We define interpretations of first order languages

as well as the relation |= between an interpretation and a formula and between

a set of formulas and a formula.

Definition 2.2.1. Interpretation

Let L be a first order language. An L-interpretation is a tupel (A, β) such that� A is a non-empty set� for each n-ary relation symbol R of L, β(R) is an n-ary relation on A.� for each n-ary function symbol F of L, β(F ) is an n-ary function on A.� for each constant c of L is β(c) an element of A.� for each variable vi of L is β(vi) an element of A.

We say that L is interpreted in the model A via the map β.

Definition 2.2.2. Let I = (A, β) be an L-interpretation.� For each variable x let I(x) = β(x).� For each constant c let I(c) = β(c).� For each n-ary function symbol f of L and terms t1, ..tn let I(ft1...tn) =

β(f)(I(t1), ..I(tn)).

For a variable x of L and an element a of A we define the L-interpretation

I a
x

= (A, β′), where β′(x) = a and for all y 6= x β′(y) = β(y).

Definition 2.2.3. The models relation |=

Let I = (A, β) be an L-interpretation, t1, .., tn be L-terms and ϕ,ψ be L-formulas.

We define:



2.3. A SEQUENT CALCULUS 9� I |= ⊥ is always false.� I |= t1 ≡ t2 iff: I(t1) = I(t2).� I |= Rt1...tn iff: β(R)(I(t1), ..., I(tn)).� I |= ¬ϕ iff: not I |= ϕ.� I |= ϕ→ ψ iff: not I |= ϕ, or I |= ψ.� I |= ∀x ϕ iff: for all a ∈ A I a
x
|= ϕ.

When we consider the abbreviated formulas from definition 2.1.9 under an

interpretation, we get the expected behaviour:

Lemma 2.2.1. Let L be a first order language, I = (A, β) be an L-interpretation,

ϕ,ψ be L-formulas. Then the following holds:� I |= ⊤ is always true.� I |= ϕ ∧ ψ iff: I |= ϕ and I |= ψ.� I |= ϕ ∨ ψ iff: I |= ϕ or I |= ψ.� I |= ϕ↔ ψ iff: I |= ϕ if and only if I |= ψ.� I |= ∃x ϕ iff: there exists a ∈ A such that I a
x
|= ϕ.

Proof: Obvious.

Definition 2.2.4. Let L be a first order language, let Γ be a set of L-formulas,

I be an L-interpretation. We write I |= Γ, if I |= ϕ for all ϕ ∈ Γ.

Definition 2.2.5. Γ |= ϕ

Let L be a first order language. let Γ be a set of L-formulas, and ϕ be an L-

formula. We say that Γ |= ϕ, if and only if, for all L-interpretations I, if I |= Γ

then I |= ϕ.

2.3 A Sequent Calculus

After defining the semantics of a formula, the question of figuring out whether

for a set of formulas Γ and a formula ϕ holds Γ |= ϕ becomes eminent. In order

to answer this, formula calculi were developed. A formula calculus is a set of

rules which allows to form new formulas from existing formulas. In this section,

we introduce a calculus which is complete and correct: Γ |= ϕ if and only if Γ ϕ

can be derived in the calculus. Note that the calculus definition is taken from

Peter Koepke’s logic lecture [11].

Fix a language L for this section.
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Definition 2.3.1. Sequents

A finite sequence of formulas 〈ϕ1, ...ϕn, ϕn+1〉 is called a sequent. The initial

segment of a sequent 〈ϕ1, ...ϕn〉 is denoted by Γ. We also write Γϕ for the

sequent 〈ϕ1, ...ϕn, ϕ〉

Definition 2.3.2. Free Variables of a Sequent

For a sequent 〈ϕ1, ...ϕn〉, we define free(〈ϕ1, ...ϕn〉) =
⋃n

i=1
free(ϕi).

Definition 2.3.3. A Sequent Calculus

We write down the rules of our calculus in the form
Premises

Result
, meaning that

if we already have Premises, then we can use this rule to get Result. Our sequent

calculus has the following rules:� Assumption
Γ ϕ ϕ� Monotonicity
Γ ϕ

Γ ψ ϕ� → Introduction
Γ ϕ ψ

Γ ϕ→ ψ� → Elimination

Γ ϕ

Γ ϕ→ ψ

Γ ψ� ⊥ Introduction

Γ ϕ

Γ ¬ϕ

Γ ⊥� ⊥ Elimination
Γ ¬ϕ ⊥

Γ ϕ� ∀ Introduction
Γ ϕ y

x

Γ ∀x ϕ
if y /∈ free(Γ ∀xϕ)� ∀ Elimination

Γ ∀x ϕ

Γ ϕ t
x

for all terms t.� ≡ Introduction
t ≡ t

for all terms t.
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Γ ϕ t
x

Γ t ≡ t′

Γ ϕ t′

x

Definition 2.3.4. ⊢

A sequent Γ ϕ which can be created by finitely many applications of the rules in

a calculus is called derivable from that calculus. We write Γ ⊢ ϕ if Γ ϕ can be

derived from the calculus.

Remark. Assume that Γ ⊢ ϕ. Then it can be shown that only the set of the

formulas in Γ is relevant for the derivation. See chapter 11.3 in [11] for details.

Definition 2.3.5. Correctness and Completeness

A calculus is called correct, if for all sequents Γ ⊢ ϕ implies Γ |= ϕ.

A calculus is called complete, if for all sequents Γ |= ϕ implies Γ ⊢ ϕ.

Theorem 2.3.1. This sequent calculus is complete and correct.

Proof: Historically, Gödel was the first to prove the completeness

of a calculus [7]. The proof for this calculus is based on Henkin’s

work [8] and can be found in Koepke’s lectures notes [11].

We will now derive four additional rules for the sequent calculus. Derivations

in the calculus will be annotated with the line number and additional information

about the rule which was used, as well as the premises which were used for the

rule. We abbreviate Monotonicity “Mono.”, Assumption “Assump.”, Introduc-

tion “Intro.”, and Elimination “Ele.”. The premises of the rule we use are written

in brackets before the name of the rule. For example, consider the following line:

Γ ¬ϕ ⊥ (2,3) + ⊥ Intro. (4)

The line number is (4). We used line (2) and (3) as premises for the ⊥ Introduc-

tion rule to derive the sequent Γ ¬ϕ ⊥.

Lemma 2.3.2. Assume that we derived Γ ¬¬ϕ in the sequent calculus. Then we

can derive Γ ϕ.

Proof:

Γ ¬¬ϕ (1)

Γ ¬ϕ ¬ϕ Assump. (2)

Γ ¬ϕ ¬¬ϕ (1) + Mono. (3)

Γ ¬ϕ ⊥ (2,3) + ⊥ Intro. (4)

Γ ϕ (4) + ⊥ Ele. (5)

Lemma 2.3.3. For every sequent Γ, we can derive Γ ⊤ in the sequent calculus.
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Proof:

Γ ¬¬⊥ ¬¬⊥ Assump. (1)

Γ ¬¬⊥ ⊥ (1) + Lemma 2.3.2 (2)

Γ ⊤ (2) + ⊥ Ele. (3)

Lemma 2.3.4. Assume that we derived Γ ¬(ϕ → ¬ψ) in the sequent calculus.

Then we can derive Γ ϕ. Because we defined ϕ ∧ ψ as ¬(ϕ → ¬ψ), this lemma

can be rephrased to: The derivability of Γ ϕ ∧ ψ in the sequent calculus implies

the derivability of Γ ϕ in the sequent calculus.

Proof:

Γ ¬(ϕ→ ¬ψ) (1)

Γ ¬ϕ ¬ϕ Assump. (2)

Γ ¬ϕ ϕ ϕ Assump. (3)

Γ ¬ϕ ϕ ¬ϕ (2) + Mono. (4)

Γ ¬ϕ ϕ ⊥ (3,4) + ⊥ Intro. (5)

Γ ¬ϕ ϕ ¬¬ψ ⊥ (5) + Mono. (6)

Γ ¬ϕ ϕ ¬ψ (6) + ⊥ Ele. (7)

Γ ¬ϕ ϕ→ ¬ψ (7) + → Intro. (8)

Γ ¬ϕ ¬(ϕ→ ¬ψ) (1) + Mono. (9)

Γ ¬ϕ ⊥ (8,9) + ⊥ Intro. (10)

Γ ϕ (10) + ⊥ Ele. (11)

Lemma 2.3.5. Assume that we derived Γ ¬(ϕ → ¬ψ) in the sequent calculus.

Then we can derive Γ ψ. Because we defined ϕ ∧ ψ as ¬(ϕ → ¬ψ), this lemma

can be rephrased to: The derivability of Γ ϕ ∧ ψ in the sequent calculus implies

the derivability of Γ ψ in the sequent calculus.

Proof:

Γ ¬(ϕ→ ¬ψ) (1)

Γ ¬ψ ¬ψ Assump. (2)

Γ ¬ψ ϕ→ ¬ψ (2) + Mono. + → Intro. (3)

Γ ¬ψ ⊥ (1,3) + ⊥ Intro. (4)

Γ ψ (4) + ⊥ Ele. (5)

So we can add the following additional rules to our calculus:

Γ ¬¬ϕ

Γ ϕ
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Γ ⊤

Γ ¬(ϕ→ ¬ψ)

Γ ϕ

Γ ¬(ϕ→ ¬ψ)

Γ ψ
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Chapter 3

The Naproche System

The Naproche system is a computer program which checks texts that are written

in a controlled natural language, the Naproche language, for correctness. Ulti-

mately, we would like the Naproche system to be able to check realistic natural

language mathematical texts, similar to those that can be found in journals and

textbooks, and to provide automated translations from such informal into formal

proofs.

This chapter gives an overview of the general design of the current Naproche

system. It introduces the theories which form the foundation of the implemen-

tation, as well as the software that is used. In section 3.1 we explain the layout

of the Naproche system, in particular its division into the input module, the lin-

guistic module, and the logic module. We then take a closer look at the linguistic

part of the Naproche system (3.2). The Naproche language is defined (3.2.1), and

a brief introduction to Discourse Representation Theory is given (3.2.2). In the

remainder of the section, we give the definitions for Proof Representation Struc-

tures (3.2.3) and show how they are created (3.2.4). Section 3.3 gives a short

introduction to automated theorem provers and the TPTP project. Finally, sec-

tion 3.4 shows a proof of the Burali-Forti paradox, written in the Naproche

language, as an example for a mathematical text which can be checked by the

Naproche system.

We abbreviate automated theorem prover with ATP, Discourse Representa-

tion Theory with DRT, Discourse Representation Structure with DRS, and Proof

Representation Structure with PRS.
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Figure 3.1: The structure of the Naproche system

3.1 An Overview

The first version of the Naproche system was written by Peter Koepke. The

input text was not processed linguistically, and an internal calculus was used for

the verification of proof steps. Because of the obvious limitations, the Naproche

system was redesigned in 2007.

In its current version, the Naproche system is devised as a plugin for the

WYSIWYG editor Texmacs [4]. If one wants to check a text with the Naproche

system, one simply has to press the appropriate button. The input then gets

processed by Naproche, giving Proof Accepted or Proof NOT accepted as output.

The program consists of three modules: Firstly, the input module which

creates an XML file from the Texmacs input and reports the result of the check

back to the user. Secondly, the linguistic module which takes such an XML file

and produces the corresponding PRS. Thirdly, the logic module which checks the

PRS for correctness. Figure 3.1 gives a graphical representation of the structure

of the Naproche system.

We will now consider the current versions of the modules in greater detail:

The input module: Michael Klein wrote the first version of this mod-

ule. Since then it has been extended by Friedemann Koepke and Nickolay

Kolev. The translation process creates an XML file, which contains the original

input annotated with unique labels for each sentence [13]. This XML file is fur-

ther processed by the rest of the Naproche system, and the result is reported as

either Proof Accepted or Proof NOT accepted. Internally, the Naproche system

already produces a much more informative output, making it easy to understand

what is going on underneath, and potentially giving a much better feedback,

especially in the case that a proof cannot be checked by the Naproche system.

Under the supervision of Gregor Büchel from the Cologne University of
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Applied Sciences, Sebastian Zittermann is working on a better Texmacs in-

teraction, so that in future versions we can have more information in the XML

file, and a more detailed report of the checking process.

The linguistic module: Nickolay Kolev’s Magister project [13] was to de-

vise and implement this module. The definitions of a PRS are given in 3.2.3, and

the constructions algorithm is explained by example in 3.2.4.

The logic module was implemented by the author with additional help from

Dörthe Arndt, Bhoomija Ranjan and Shruti Gupta. The PRS is, step by

step, translated into first order logic, and, if necessary, checked by an ATP. The

details of the algorithm are described in chapter 4. For the interaction with the

ATP, we use software from the TPTP project, which is described in 3.3.

Note that the output Proof NOT accepted does not imply that the proof is

wrong! It only means that Naproche was not able to verify at least one step in

the proof.

3.2 The Linguistics of the Naproche System

The linguistic challenge of the Naproche system is to teach the computer how

to “understand” the input text. Computer linguistics has several approaches

for this problem. We chose one of these, Discourse Representation Theory, as

linguistic framework for the Naproche system. Discourse Representation Theory

offers Discourse Representation Structures as a method to extract the meaning

of a text. Since mathematical texts have several peculiarities in comparison to

natural language texts, we had to change this approach a bit, and, as a result,

developed Proof Representation Structures [13].

We will first define the controlled natural language which the Naproche system

currently accepts. Then, we take a look at Discourse Representation Theory and

Discourse Representation Structures, and lastly we explain Proof Representation

Structures as they are used in the Naproche system.

Hans Kamp developed DRT and DRS. The book From Discourse to Logic

that he wrote together with Uwe Reyle gives a good and thorough introduction.

Note that, even though Zinn [34] also uses the notion of a PRS, and has similar

ideas, his definition of a PRS is not the one we will use in the sequel.

For the rest of the chapter, we use discourse synonymously with text.

3.2.1 The Naproche Language

The Naproche language is the controlled natural language which can be parsed

and processed by the current Naproche system. It was designed to handle the

peculiarities of mathematical texts and even though it is still a very limited

language, it is interesting to note that texts, which are written with these limited
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means, do already look quite similar to real mathematical text. We will see an

example for this in section 3.4.

In the future, we would like to expand the Naproche language. At best, we

would like the Naproche language to be so natural and expressive, that one can

write Naproche texts which a human reader cannot distinguish from a natural

language mathematical text. The original definition of the Naproche language

can be found in [13].

Definition 3.2.1. The Naproche Language

The current version of the Naproche language consists of� Structure markers

Theorem, Lemma, Proof, Qed.� Statements

statement --> (statement_trigger), sub-statement.

Where statement trigger is either empty or one of the following: then, hence,

recall that, but, in particular, observe that, together we have and so.� Definitions

define --> "define", sub-statement, "if and only if",

sub-statement.

define --> "define", sub-statement, "iff", sub-statement.� Assumptions

assumption --> (assumption_trigger), sub-statement.

Where assumption trigger is one of the following: let, consider, assume that

and assume for a contradiction that.� Assumption closing

assumption-close --> "thus", sub-statement.� Quantification and implies

quantification --> "for all", variable, ",",

sub-statement.

quantification --> "there is an", variable, "such that",

sub-statement.

implication --> sub-statement, "implies", sub-statement
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negation --> "not", sub-statement.

In all these cases, sub-statement is a formula that is created from a fixed

underlying first order language, and variable is a variable from the same language.

The complete grammar of the current Naproche language in Backus-Naur Form

can be found in appendix C, and the first order language which is used in the

Naproche system is defined in appendix B.

3.2.2 Discourse Representation Theory and

Discourse Representation Structures

What exactly is Discourse Representation Theory?

DRT offers a natural architecture for thinking about the way informa-

tion is accumulated in the course of discourse processing: essentially

it allows us to draw pictures of the changing context. [1]

The main idea behind DRT is to see a discourse in its context. For example, when

we consider the sentence “She ate the cake”, then, in order to figure out who is

meant with she, we have to look at the information in the sentences preceding

this sentence. The entities which we encountered in the text so far are part of

the context. They are also called discourse referents. Basic DRT stops here, but

there are modifications where the meaning of context is extended. For example

the tense in which the text is written could be part of the context.

In DRT, the discourse is processed incrementally. Each sentence is first inter-

preted in the context so far and then the context gets updated according to the

content of the processed sentence.

We will present the simplest version of a DRS, in which context only means

accessible discourse referents, by giving the basic definitions, taken from [1], as

well as two small examples.

Definition 3.2.2. DRS and DRS conditions

Let L be a first order language. We define DRSs and DRS conditions by a

simultaneous recursion. Let x1, ..., xn be variables of L (also called discourse

referents), and γ1, ...γm be DRS conditions, then D = (〈x1, ..., xn〉, 〈γ1, ..., γm〉) is

a DRS. DRS conditions are defined as follows:� If R is an n-ary relation symbol of L, and t1, ..., tn are terms of L, then

R(t1, ..., tn) is a condition.� If t1, t2 are terms of L, then t1 ≡ t2 is a condition.� If B is a DRS, then ¬B is a condition.
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Let R be an n-ary relation symbol of L, and t1, ..., tn be terms of L, then a

DRS condition of the form R(t1, ..., tn) is called a relation condition, and a DRS

condition of the form t1 ≡ t2 is called an equivalence condition.

There is also a graphical representation of a DRS, which is, due to readability,

more commonly used. In the graphical notation, a DRSD = (〈x1, ..., xn〉, 〈γ1, ..., γm〉)

is written as:

x1, ...xn

γ1

...

γn

To keep track of the context of a DRS, we define accessibility. Roughly

speaking, everything which is accessible from a DRS is part of the context of

that DRS.

Definition 3.2.3. Accessibility

A DRS B is accessibly from a DRS C if, and only if, B = C or B subordinates

C.

Definition 3.2.4. Subordinates

A DRS B subordinates a DRS C if, and only if B immediately subordinates

C, or if there is some DRS D such that B immediately subordinates D and D

subordinates C.

Definition 3.2.5. Immediately subordinates

A DRS B immediately subordinates a DRS C if, and only if� B contains a condition of the form ¬C.� B contains a condition of the form C ∨D or D ∨ C for some DRS D.� B contains a condition of the form C ⇒ D for some DRS D.� B ⇒ C is a condition in some DRS D.

When we consider the graphical representation of a DRS, this basically means

that every piece of information which stands above, or on the left, of a DRS D

is accessible from D.
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We will now consider a few examples, namely we will take a look at two

discourses and show their corresponding DRS. If you are interested in the details,

chapter 1 from [1] gives a good introduction.

Example 3.2.1. The sentence “Peter is big.” has the corresponding DRS:

x

x ≡ PETER

BIG(x)

Example 3.2.2. The discourse “Peter is big. He lives in New York.” has the

corresponding DRS:

x, y, z

x ≡ PETER

BIG(x)

y ≡ NEW Y ORK

LIV E(z, y)

x ≡ z

This example shows how accessibility is used for pronoun resolution. In order to

figure out who is meant by the pronoun “he” in the second sentence, we consider

the discourse referents which are accessible in the current DRS. In this simple

example, the only accessible discourse referent we have is x. Therefore, “he”

must refer to x and we can add x ≡ z to our conditions.

Now, x is also the only discourse referent which is available at that point, so

one might wonder if accessibility is really necessary. Imagine a bigger text where

we talk about two men, Peter and Paul. If in such a text the pronoun “he”

appears, it is not be obvious to whom it refers to. In this a case, accessibility

helps, because it restricts the available discourse referents.

The Semantic of DRS

Having defined DRS, we can now interpret DRS in different models. We define

the truth of a DRS with respect to an interpretation. For additional reading,

take a look at [30].

Definition 3.2.6. Assignments and partial Interpretations

Let L be a first order language. A partial L-interpretation is a tupel (A, β) such

that� A is a non-empty set� for each n-ary relation symbol R of L, β(R) is an n-ary relation on A.
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Given a partial L-interpretation (A, β), an assignment f is a map from a subset

of the variables of L to A.

Definition 3.2.7. Let (A, β) be a partial L-interpretation and f be an assign-

ment. Then we define the map αf :� For each constant c let αf (c) = β(c)� For each variable x for which f(x) is defined let αf (x) = f(x)� For each n-ary function symbol g of L and L-terms t1, ...tn which only con-

tain variables for which f is defined, let αf (gt1, ..., tn) = β(f)(αf (t1), ..., αf (tn)).

Definition 3.2.8. Let D be a DRS, and L be the underlying first order language.

Let I = (A, β) be a partial L-interpretation. An assignment f verifies D if there

is an assignment f ′ which extends f , and has the following property:� f ′ is defined for all discourse referents of D, and for all variables which

occur in relation or equivalence conditions of D.� If R(t1, ..., tn) is a DRS condition in D, then β(R)(f ′(t1), ..., f
′(tn)).� If t1 ≡ t2 is a DRS condition in D, then αf ′(t1) = αf ′(t2).� If ¬B is a DRS condition in D, then there is no assignment g which agrees

with f ′ on all variables that are not discourse referents of B, such that g

verifies B.� If B1 ∨ B2 is a DRS condition in D, then there is an assignment g which

extends f ′ such that g verifies B1 or g verfies B2.� If B1 ⇒ B2 is a DRS condition in D, then every assignment g which agrees

with f ′ on all variables that are not discourse referents of B1 and verifies

B1 also verifies B2.

The PRS D is called true under I if the empty assignment verifies D.

3.2.3 Proof Representation Structures

PRSs are a special type of DRS. The difference lies in the definition of the context

of a sentence. For a PRS, we consider the context of a sentence to be the accessible

discourse referents, the mathematical formulas we are talking about, references

to other parts of the discourse, and the premises which are active.
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We will give the basic definitions for PRSs, based upon Kolev’s [13] Magister

thesis. The definition of PRSs and PRS conditions is done via simultaneous

recursion:

Definition 3.2.9. Proof Representation Structures

Let L be a first order language. A PRS is a quintuple 〈id,D,M,C,R〉, where� id is a unique string.� D is a set of discourse referents.� M is a set of mathematical referents.� C is a finite sequence of PRS conditions.� R is a set of textual references.

and every element of M is either a term or a formula of L.

Definition 3.2.10. PRS condition

Let A,B be PRSs. Then� holds(X) is a PRS condition, where X ∈ D.� math id(X,Y ) is a PRS condition, where X ∈ D is a discourse referent and

Y ∈M is a mathematical referent.� A is a PRS condition.� ¬A is a PRS condition, representing a negation.� A := B is a PRS condition, representing a definition.� A→ B is a PRS condition, representing an implication or quantification.� A => B is a PRS condition, representing an assumption.� contradiction is a PRS condition, representing a contradiction.

PRS conditions of the form A := B are called definition conditions, conditions of

the form A → B are called implication or quantification conditions, a condition

of the form A => B is also called a assumption condition, and a condition of the

form contradiction is called a contradiction condition.

Remark. The first order language for PRSs which we use in the Naproche system

is defined in the math lexicon which can be found in appendix B.
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Definition 3.2.11. Structure and non-structure PRS

We distinguish between structure and non-structure PRS. A structure PRS is

created when the word “Theorem” or “Lemma” is parsed in the input text. The

id of a structure PRS starts with theorem/lemma and ends with a unique number.

A structure PRS has exactly two conditions. Both of them are PRSs. The first

PRS is called the goal, the second the body of the structure PRS. The idea is

that the statement of, for example, a theorem is stored in the goal condition,

while the proof of the theorem is stored in the body.

Every PRS which does not stem from the word “Theorem” or “Lemma”, and

therefore does not have a theorem/lemma id, is called a non-structure PRS. If

a structure PRS stems from the word “Lemma”, it is also called a lemma PRS.

Analogously, if it stems from the word “Theorem”, then we call it a theorem PRS.

Definition 3.2.12. Empty PRS

Every PRS with no conditions is called empty. Analogously, every PRS with at

least one conditions is called non-empty.

Definition 3.2.13. The depth d of a PRS

Again, we use simultaneous recursion. Let X be a discourse referent, Y be a

mathematical referent, B,C be PRSs, and let B have conditions β1, ..., βm. We

define the depth of a PRS recursively. Every empty PRS E has depth d(E) = 0. A

non-empty PRS A with conditions γ1, .., γn has depth d(A) = maxi=1,...,n d(γi)+

1. The depth of a condition is defined as follows:� d(holds(X)) = 0� d(math id(X,Y )) = 0� d(B) = maxj=1,...,m d(βj) + 1 if B is non-empty.� d(B) = 0 if B is empty.� d(¬B) = d(B)� d(B := C) = max(d(B), d(C))� d(B → C) = max(d(B), d(C))� d(B => C) = max(d(B), d(C))� d(contradiction) = 0

Definition 3.2.14. Accessibility

A PRS B is accessibly from a PRS C if, and only if B = C or B subordinates C.
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Definition 3.2.15. Subordinates

A PRS B subordinates a PRS C if, and only if B immediately subordinates

C, or if there is some PRS D such that B immediately subordinates D and D

subordinates C.

Definition 3.2.16. Immediately subordinates

Let A be a PRS. A PRS B immediately subordinates a PRS C if, and only if� B contains a condition of the form C.� B contains a condition of the form ¬C.� A has conditions γ1, ..γn, and B = γi and C = γj for some 1 ≤ i < j ≤ n.� B contains a condition of the form C := D or D := C for some PRS D.� B contains a condition of the form C → D or D → C for some PRS D.� B contains a condition of the form C ⇒ D or D ⇒ C for some PRS D.� B := C is a condition in A.� B → C is a condition in A.� B ⇒ C is a condition in A.

Definition 3.2.17. The graphical representation of a PRS

When we see PRSs only as quintuples, working with them becomes extremely

tedious. In order to make it simpler, we developed a graphical notation for PRS,

similar to the graphical notation for DRS.

The graphical notation of a PRS P = 〈id,D,M,C,R〉 with id i, discourse ref-

erents d1, ..., dn, mathematical referents m1, ..mk, conditions c1, ..., cl and textual

referents r1, ..rp can be seen in figure 3.2.

Figure 3.2: The graphical notation of a PRS P = 〈id, D, M, C, R〉 with id i, discourse referents d1, ..., dn,
mathematical referents m1, ..mk, conditions c1, ..., cl and textual referents r1, ..rp

Note that in the graphical notation we use → for assumption conditions, and

==> for implication conditions
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The Semantic of PRS

In section 4.2 we define the formula image of a PRS, which maps a PRS to a set

of sequences of first order formulas. This map gives an implicit definition of the

PRS semantic.

The explicit definition is beyond the scope of this thesis, and will be covered

in an separate article.

3.2.4 From Discourse to PRS

Having defined the Naproche language and PRSs, we will now take a look at

the relation between them. We will show by example how the Naproche system

transforms a text into a PRS. The explicit algorithm can be found in [13].

Our example is a short theorem from basic set theory which states that the

empty set is an ordinal:

Assume that ¬∃y y ∈ ∅. Assume that for all x, ¬x ∈ x. Define

Trans(x) iff ∀u∀v((u ∈ v) ∧ (v ∈ x)) → (u ∈ x). Define Ord(x) iff

Trans(x) ∧ (∀y((y ∈ x) → Trans(y))).

Theorem. Ord(∅).

Proof. Consider u ∈ v and v ∈ ∅. Assume that ¬Trans(∅). Then

∃x(x ∈ ∅). Contradiction. Thus Trans(∅). Assume that ¬Trans(v).

Then ∃x(x ∈ ∅). Contradiction. Thus Trans(v). Thus Ord(∅). Qed.

This text is completely written in the Naproche language and can therefore

be parsed by the Naproche system. In the following, we abbreviate discourse

referent as Dref, and mathematical referent as Mref.

Like most DRS construction algorithms, and arguably human understanding,

the PRS building process is incremental. We process one sentence after the

other, interpreting and updating the context in each step. At the beginning of

the parsing, there is no context, so we start with the empty PRS, as can be seen

in figure 3.3.

Figure 3.3: The Ord(∅) Example 1

The first sentence is an assumption:

Assume that ¬∃y y ∈ ∅.
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A new assumption condition is added to the PRS. It has the form A => B∗,

where A and B are also PRSs. The formula we assume to be true is written

in the left-hand side PRS A of the assumption condition, and everything which

is stated under this assumption is stored in the right-hand side PRS B of the

assumption condition.

In our case, the formula is ¬∃y y ∈ ∅. Internally, the Naproche system uses a

different notation which will be introduced in 3.3. In this notation, the formula

becomes ∼ (?[y] : (in(y, emptyset ))). The Naproche system notices that there

is a new entity in our discourse, namely this formula. Therefore, a new Dref is

created. Since the entity is a formula we also get a new Mref. They are connected

by a math id condition. Finally, the Naproche system also adds a holds condition,

to state that it considers this formula to be true. The corresponding PRS can be

seen in figure 3.4.

Figure 3.4: The Ord(∅) Example 2

Until we close the assumption by a “Thus” sentence, the contruction will

proceed in the right-hand side PRS of the assumption condition. Next in our

discourse is another assumption:

Assume that for all x, ¬x ∈ x.

The Naproche system creates a new assumption condition. This time, our

formula is for all x, ¬x ∈ x, which is not pure first order, but natural language

mixed with first order. This formula gets stored as a quantification condition,

which has the form A → B for PRSs A and B, in the left-hand side PRS of

the assumption condition. The Naproche system creates a new quantification

condition where x, the variable we quantify over, is stored in the the left-hand

side PRS A of the quantification condition. The formula ¬x ∈ x is saved in the

right-hand side PRS B of the quantification condition. In the left-hand side PRS,

x gets a discourse referent, and is saved as a Mref. Since x is only a variable, we

do not have a holds condition. In the right-hand side PRS of the quantification

∗Remember that in the graphical notation we use → for assumption conditions, and ==>

for implication and quantification conditions
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condition, we only have one new Dref, but two Mrefs. The Mrefs are our formula,

¬x ∈ x, and the free variable in the formula, x. Now, x is already known and

accessible, and therefore does not get a new Dref. The formula is treated exactly

as we saw in the last assumption. The corresponding PRS for our parsed discourse

can be seen in figure 3.5.

Figure 3.5: The Ord(∅) Example 3

Because we parsed another assumption, the construction will proceed in the

right-hand side PRS of the newly added assumption condition. Next, we have

two definitions:

Define Trans(x) iff ∀u∀v((u ∈ v) ∧ (v ∈ x)) → (u ∈ x).

Define Ord(x) iff Trans(x) ∧ (∀y((y ∈ x) → Trans(y))).

For each of them, a definition condition is created. We will consider the

Trans(x) definition in detail.

On the left-hand side PRS of the definition condition is the new entity which

we want to define, Trans(x). We have two new Drefs, and two Mrefs. The free

variable x is treated as a new discourse referent because the x we encountered

before it not accessibly. math id conditions connect the Mrefs to the Drefs, and

we have a holds condition for the formula.

The right-hand side PRS contains the formula ∀u∀v((u ∈ v) ∧ (v ∈ x)) →

(u ∈ x). Our Mrefs are the formula itself, and its free variable, x. x does not get

a new discourse referent as we already have an accessibly x. Again, we have a

math id and a holds statement for the formula.

The Ord(x) definition is treated analogously. Figure 3.6 shows the newly

added definition conditions.

Note that we are still working within the right-hand side PRS of the second

assumption condition.

The next sentence is simply “Theorem.”. This is a structure marker in the

Naproche language. For now, it just creates a new empty PRS as condition , a

theorem PRS. The updated PRS can be seen in figure 3.7.
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Figure 3.6: The Ord(∅) Example 4

Figure 3.7: The Ord(∅) Example 5

The PRS construction proceeds within the theorem PRS.

The statement of our theorem is simply a formula, Ord(∅). The Naproche

system creates a new PRS as condition in the theorem PRS. In this new PRS,

the statement, or goal, of the theorem is stored, and therefore the PRS is called

the goal condition of the theorem PRS. (Figure 3.8).

The sentence “Proof.” lets the Naproche system close the goal condition, and

start the second PRS in our theorem PRS which is called the body condition. The

body condition will store the proof of the theorem. Figure 3.9 shows the updated

PRS.

We now consider the first part of the proof:

Consider u ∈ v and v ∈ ∅. Assume that ¬Trans(∅). Then ∃x(x ∈ ∅).

Contradiction. Thus Trans(∅).

We start with an assumption, “Consider u ∈ v and v ∈ ∅”. The corresponding

PRS has four new Drefs, two for the formulas , and two for the free variables u
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Figure 3.8: The Ord(∅) Example 6

and v. Note that ∅ does not get a Dref because it is a constant.

The second assumption brings nothing new. The “Then ...” sentence creates

a new condition which is a PRS. In this PRS, the formula after the “Then”

is stored. The “Contradiction.” sentence becomes a PRS with a contradiction

condition.

The final sentence of this part, “Thus Trans(∅).” closes the last assumption,

namely “Assume that ¬Trans(∅).”. The formula after “Thus” is treated as usual.

The body of the theorem PRS can be seen in figure 3.10.

We only have a few sentences left to parse:

Assume that ¬Trans(v). Then ∃x(x ∈ ∅). Contradiction. Thus

Trans(v). Thus Ord(∅). Qed.

The remainder of the proof brings only one novelty, the “Qed.” sentence.

“Qed.” is a marker which lets the Naproche system close all assumptions which

were opened in the body condition, the body condition itself, and also the theorem

PRS. If there were any more sentences, then the construction would proceed in

the PRS which has the theorem PRS as condition. So, the sentence “Qed.” is

similar to a “Thus” sentence. “Thus” closes the last assumption, and “Qed.”

closes a theorem PRS. Figure 3.11 shows the complete theorem PRS.
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Figure 3.9: The Ord(∅) Example 7

Figure 3.10: The Ord(∅) Example 8
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Figure 3.11: The Ord(∅) Example 9

Finally, figure 3.12 shows the complete PRS for the proof of Ord(∅).
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Figure 3.12: The PRS for the proof of Ord(∅).
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3.3 Automated Theorem Provers and TPTP

The idea that computers could be used to check, or even generate, proofs goes

back to the 1960s. John McCarthy’s paper from 1963 [17] talks about “proof

procedures and proof checking procedures”:

... computers can be used to carry out the algorithms that are being

devised to generate proofs of sentences in various formal systems. [17]

The Mizar project was started in 1973, and even the idea for the SAD pro-

gram goes back to around 1970 [22].

By the end of the 20th century, several Automated Theorem Provers existed.

Naturally, scientists were interested in comparing them. In order to do that, one

first needs test cases. In [27], Geoff Sutcliffe brought up the idea of the

TPTP (Thousands of Problems for Theorem Provers) Problem Library.

The TPTP (Thousands of Problems for Theorem Provers) Problem

Library is a library of test problems for automated theorem proving

(ATP) systems. [23]

and further,

The principal motivation for the TPTP is to support the testing and

evaluation of ATP systems, to help ensure that performance results

accurately reflect the capabilities of the ATP system being considered.

A common library of problems is necessary for meaningful system

evaluations, meaningful system comparisons, repeatability of testing,

and the production of statistically significant results. The TPTP is

such a library. [23]

In 1996 [28], the first ATP system competition was devised, and it was held in

1997 [26]. The TPTP library comes with its own syntax for writing down prob-

lems. The current version can be found on the TPTP homepage [29]. Over the

years, several programs, which deal with TPTP in one form or another, have been

developed. One program, which is of particular interest for the Naproche system,

is SystemsOnTPTP [24]. It translates problems, written in TPTP Syntax, into

the input format of the desired ATP, for example OTTER or Vampire. This

means, that if you have a problem in TPTP Syntax, you can run it on several

different provers, using this program.

TPTP and Naproche

In the Naproche system, we want to check mathematical texts with ATPs. The

TPTP Syntax, in combination with SystemsOnTPTP [24] makes us independent
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from specific provers. We can use different provers without having to worry about

different input formats. Furthermore, it allows us to compare different provers

easily and see which one is best suited for our efforts. Once we start writing in,

or translating into, the Naproche language, this would also be a source of new

problems for the TPTP library.

3.3.1 The TPTP Syntax

We will give a quick overview of the part of the TPTP Syntax which is used in

the Naproche system. If you are interested in the original definition, take a look

at [29].

A first order formula in TPTP has the following form:

fof (〈name〉, 〈formula role〉, 〈fof formula〉〈annotations 〉).

Here, 〈name〉 is a string. Usually, we use a number for 〈name〉. The combination

(〈name〉, 〈formula role〉) must be unique.

〈formula role〉 defines the role of the formula. In the Naproche system, we

only allow two values here: axiom for formulas which we do not want to prove,

and conjecture for formulas we want to prove.

〈fof formula〉 is the actual first order formula, written in the TPTP syntax

which will be defined later in this section.

〈annotations〉 is used for additional information. In the Naproche system, we

do not use this field.

Before we go on, and explain 〈fof formula〉, let’s look at an actual Naproche

TPTP obligation:

Example 3.3.1. Naproche TPTP Query

fof(1, axiom, ~(?[Vy]:(in(Vy,vemptyset)))).

fof(2, axiom, ![Vx]:(~(in(Vx,Vx)))).

fof(3, axiom, ![Vx]:((trans(Vx))<=>(![Vu]:(![Vv]:

(((in(Vu,Vv))&(in(Vv,Vx)))=>(in(Vu,Vx))))))).

fof(4, axiom, ![Vx]:((ord(Vx))<=>((trans(Vx))&(![Vy]:

((in(Vy,Vx))=>(trans(Vy))))))).

fof(5, axiom, in(vv,vemptyset)).

fof(6, axiom, in(vu,vv)).

fof(7, axiom, ~(trans(vemptyset))).

fof(1, conjecture, ?[Vx]:(in(Vx,vemptyset))).

The Naproche system asks the prover whether it can prove conjecture 1 from

the axiom 1-7.
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Formulas in TPTP

The TPTP language for formulas has the usual logical connectives: ∼ for nega-

tion, & for conjunction, | for disjunction, => for implication and <=> for equiv-

alence. Quantifiers are !, for universal quantification, and ?, for existential quan-

tification.

Each string starting with an upper case letter is a variable. Strings starting

with a lower case letter are either constants or relations. Relations are followed by

brackets, which contain variables, constants or other relations. Round brackets

have their usual meaning, square brackets are used with quantifiers to denote the

variables which are bound by the quantifier. For an example, let us consider the

second axiom from the example Naproche TPTP query:

fof (2, axiom , ![V x] : (∼ (in(V x, V x)))).

The formula here is ![V x] : (∼ (in(V x, V x))). Substituting the TPTP symbols

with our normal symbols gives ∀[V x] : (¬(in(V x, V x))). Now, in is the predicate

we use for ∈, and V is the letter the Naproche system attaches to bound variables.

So, further simplification leads to ∀x,¬x ∈ x, the foundation axiom.

Free and bound variables in TPTP and the Naproche system

In natural language mathematics, free and bound variables are usually not specif-

ically marked or distinguished. In TPTP syntax, however, every variable must

be bound! Consequently, we can have no free variables in a formula which is

written in TPTP syntax. Further, variables must start with a capital letter in

TPTP, whereas in natural language, they have no restrictions.

The Naproche system deals with this as follows. When it translates a Naproche

formula into a TPTP formula it first uses the algorithm, described in 2.1.6, to

calculate the free and bound variables. Then, a lower case v is attached to each

free variable and to each constant, and an upper case V is attached to each

bound variable. So, free variables in Naproche formulas are treated as constants

in TPTP. As an example, consider the conjecture of the example query:

?[V x] : (in(V x, vemptyset))

In our first order logic, this formula reads: ∃x, x ∈ ∅. The bound variable x be-

came Vx in the TPTP translation, and the constant emptyset became vemptyset

to ensure that it is treated as a constant by the ATP.

3.4 An Example: The Burali-Forti Paradox

In 1897, Burali-Forti discovered that the class of all ordinals is not a set [2].

Together with Russell’s antinomy [9], these two theorems are prominent exam-

ples of why in modern set theory one distinguishes classes and sets. Difficulties
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like these lead mathematicians to abandon Frege’s set theory, and to develop

and use ZFC.

We can formulate the Burali-Forti paradox in the Naproche language by

using von Neumann’s definition of ordinals in the proof. Once it is stated in the

Naproche language, the Naproche system can successfully check it. We present

the Burali-Forti paradox in the Naproche language:

Assume that ¬∃y (y ∈ ∅).

Assume that ∀x (¬x ∈ x).

Define Trans(x) if, and only if ∀u, v((u ∈ v) ∧ (v ∈ x)) → (u ∈ x)).

Define Ord(x) if, and only if Trans(x) ∧ (∀y(y ∈ x) → Trans(y)).

Theorem.

Ord(∅).

Proof.

Consider u ∈ v and v ∈ ∅.

Assume that ¬Trans(∅).

Then ∃x(x ∈ ∅).

Contradiction.

Thus Trans(∅).

Assume that ¬Trans(v).

Then ∃x(x ∈ ∅).

Contradiction.

Thus Trans(v).

Thus Ord(∅).

Qed.

Theorem.

For all x, y x ∈ y ∧ Ord(y) implies Ord(x).

Proof.

Consider x ∈ y and Ord(y).

Then ∀x((x ∈ y) → Trans(x)).

Hence Trans(x).

Assume that u ∈ x.

Then u ∈ y.

Hence Trans(u).

Thus Ord(x).

Qed.

Theorem.
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For all x,¬(∀u(u ∈ x) ↔ Ord(u)).

Proof.

Assume for a contradiction that there is an x such that ∀u((u ∈ x) ↔

Ord(u)).

Lemma.

Ord(x)

Proof.

Let u ∈ v and v ∈ x.

Then Ord(v).

Hence Ord(u).

So, u ∈ x.

Thus Trans(x).

Let v ∈ x.

Then Ord(v).

So Trans(v).

Thus Ord(x).

Qed.

Then x ∈ x.

Contradiction.

Qed.

A Naproche text needs to be self-containing which means that everything

which is used in the text must be defined in it. Therefore, we need the assump-

tions and definitions. The two theorems which are proven before Burali-Forti’s

paradox are stated to make the task easier for the ATP. We could skip them, and

only write down the proof of the main theorem, but this would either increase the

time needed to check the text, or even render the Naproche system completely

unable to do so.

If you like to have more details on how Naproche checks this text, take a look

at [14]. This example is covered there in great detail.
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Chapter 4

The Naproche Calculus

In this chapter, we define our calculus for Proof Representation Structures. We

take a look at the relation between the Naproche language and the calculus,

as well as the relation between the calculus and the actual sourcecode of the

Naproche system. In the last section, we show its soundness and completeness

under certain conditions.

Note that the notion of a calculus might be a bit misleading. The calculus

we are going to introduce is not purely on PRS level, like for example the DRS

calculus in [30], but rather a mixture of PRS and first order arguments. We

decided to use the word calculus nonetheless, because the Naproche calculus

provides a set of rules which allow to create certain objects, PRSs, and such

derived objects are ’correct’ in a certain sense. In this aspect, the Naproche

calculus is similar to other calculi.

4.1 Preliminaries

Before we define the calculus, we need some preliminary definitions and lemmas.

Note that easy formal proofs in the sequent calculus are not annotated in this

chapter.

Definition 4.1.1. Let A,B be sets. Then A−B is defined as

A−B = {x | x ∈ A ∧ x /∈ B}

Definition 4.1.2. For a sequent 〈ϕ1, ..., ϕn〉 we define
∧

〈ϕ1, ..., ϕn〉 = ϕ1 ∧ ... ∧ ϕn

and

¬〈ϕ1, ..., ϕn〉 = 〈¬ϕ1, ...,¬ϕn〉
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In the special case of the empty sequence, we set
∧
〈〉 = ⊤ and ¬〈〉 = 〈〉. We also

use the more common notation for the
∧

operator: Let ϕ1, ..., ϕn be formulas.

We define:
n∧

i=1

ϕi = ϕ1 ∧ ... ∧ ϕn

For two sequents 〈ϕ1, ..., ϕn〉 and 〈ψ1, ..., ψm〉 we define

〈ϕ1, ..., ϕn〉 + 〈ψ1, ..., ψn〉 = 〈ϕ1, ..., ϕn, ψ1, .., ψn〉

Let Γ1, ..,Γn be sequents. Then we define
⊕

0

1
Γi = 〈〉 and

n⊕

i=1

Γi =

n−1⊕

i=1

Γi + Γn

Definition 4.1.3. Let Γ and Θ = 〈θ1, ..., θn〉 be sequents. We define Γ ⊢seq Θ if,

and only if for all 1 ≤ i ≤ n holds

Γ + 〈θj | 1 ≤ j ≤ i− 1〉 ⊢ θi

Lemma 4.1.1. Let Γ ⊢seq 〈θ1, ..., θn〉, then Γ ⊢ θi for all 1 ≤ i ≤ n.

Proof: By induction over the length n of the sequence. For n = 1 the

lemma is obvious. So let n > 1 and assume the result is true for all

m < n. By definition, Γ ⊢seq 〈θ1, ..., θn〉 implies Γ ⊢seq 〈θ1, ..., θn−1〉.

Using the induction hypothesis, we get Γ ⊢ θi for all 1 ≤ i ≤ n − 1.

It remains to show, that Γ ⊢ θn. We use the definition of ⊢seq and

calculate:

Γ + 〈θi | 1 ≤ i ≤ n− 2〉 θn−1

Γ + 〈θi | 1 ≤ i ≤ n− 2〉 θn−1 θn

Γ + 〈θi | 1 ≤ i ≤ n− 2〉 θn−1 → θn

Γ + 〈θi | 1 ≤ i ≤ n− 2〉 θn

So, we shortened the sequence which we had to add to Γ by one: We

concluded Γ+〈θi | 1 ≤ i ≤ n−2〉 ⊢ θn from Γ+〈θi | 1 ≤ i ≤ n−1〉 ⊢ θn.

Iterated application of this argument gives us Γ ⊢ θn. qed

Lemma 4.1.2. Let Γ ⊢ θi for all 1 ≤ i ≤ n, then Γ ⊢seq 〈θ1, ..., θn〉.

Proof: Follows directly from the monotonicity rule. qed
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Lemma 4.1.3. Let Γ,Θ and Φ = 〈ϕ1, .., ϕn〉 be sequents and Γ+Θ ⊢seq Φ. Then

Γ ⊢seq 〈
∧

Θ → ϕi | 1 ≤ i ≤ n〉

Proof: First note that by lemma 4.1.1 we get that Γ + Θ ⊢ ϕi for all

1 ≤ i ≤ n. By lemma 4.1.2, it is enough to show, that Γ ⊢
∧

Θ → ϕi,

for all 1 ≤ i ≤ n. Let Θ = 〈θ1, ..., θm〉. We show that Γ + Θ ⊢ ϕi

implies Γ ⊢
∧

Θ → ϕi, by induction on m. For m = 1, the statement

is obvious:

Γ θ1 ϕi

Γ θ1 → ϕi

Now, let m > 1 and assume that Γ + 〈θ1, ..., θl〉 ⊢ ϕi implies Γ ⊢∧l
j=1

θj → ϕi for all l < m. Let Γ+〈θ1, ..., θm〉 ⊢ ϕi. Using the induc-

tion hypothesis, we get Γ+〈θ1〉 ⊢
∧m

j=2
θj → ϕi. Setting ψ =

∧m
j=2

θj,

θ = θ1, and ϕ = ϕi we can calculate:

Γ θ ψ → ϕ (1)

Γ θ → (ψ → ϕ) → Intro. (2)

Γ ¬(θ → ¬ψ) ¬(θ → ¬ψ) Assump. (3)

Γ ¬(θ → ¬ψ) θ (3) + Lemma 2.3.4 (4)

Γ ¬(θ → ¬ψ) θ → (ψ → ϕ) (2) + Mono. (5)

Γ ¬(θ → ¬ψ) ψ → ϕ (4,5) + → Ele. (6)

Γ ¬(θ → ¬ψ) ψ (3) + Lemma 2.3.5 (7)

Γ ¬(θ → ¬ψ) ϕ (6,7) + → Ele. (8)

Γ ¬(θ → ¬ψ) → ϕ (8) + → Intro. (9)

Since ¬(θ → ¬ψ) = θ ∧ ψ ⇔
∧m

j=1
θj, we can conclude that Γ ⊢∧m

j=1
θj → ϕi.

qed

Lemma 4.1.4. Let Γ,Θ,Φ be sequents and Γ ⊢seq Θ, Γ + Θ ⊢seq Φ. Then

Γ ⊢seq Φ.

Proof: Let Θ = 〈θi | 1 ≤ i ≤ n〉 and Φ = 〈ϕj | 1 ≤ j ≤ m〉. By

Lemma 4.1.1, we get that Γ ⊢ θi for all 1 ≤ i ≤ n. We show that

Γ ⊢ ϕj for all 1 ≤ j ≤ m. Fix a j and assume that Γ ⊢ ϕl for all l < j.

We calculate:
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Γ θ1, ...θn, ϕ1, ...ϕj−1 ϕj

Γ θ1, ...θn, ϕ1, ...ϕj−2 ϕj−1 → ϕj

...
...

...

Γ θ1 → (...(ϕj−1 → ϕj)...)

Iterated application of the → eliminations rule and the induction

hypothesis gives Γ ⊢ ϕj . Hence, Γ ⊢ ϕj for all 1 ≤ j ≤ m. But

by lemma 4.1.2, this implies Γ ⊢seq Φ. qed

4.2 A Calculus for PRSs

In order to define our calculus for PRSs, we first need to introduce the notion

of the Formula Image of a PRS. Remember that a PRS only has finitely many

conditions (3.2.10).

For this chapter, we assume that in every PRS, for each Dref which is intro-

duced, there is exactly one math id condition. The math id condition for a Dref

is in the same PRS in which that Dref is introduced. If a Dref is not introduced in

a PRS, then there is no math id condition for this Dref in that PRS. This implies,

that if there is a holds condition with argument x in a PRS A then there is PRS

B which is accessible from A, and B has a math id condition which has x as the

Dref argument. So, each Dref is mapped to a term or a formula by a math id

condition. Because there is exactly one math id condition for each Dref, this

map is well-defined. Using this map, we simplify our notation, and assume that

holds conditions do not have Drefs, but formulas as arguments. Note that, the

PRS construction algorithm which is used in the current version of the Naproche

system ensures that there is exactly one math id condition for each Dref.

Definition 4.2.1. Mref(A)

Let A be a PRS. Then Mref (A) is the set of all Mrefs of A.

As an example, consider the sentence “For all x x=x”. The corresponding

PRS has one quantification condition of the form B → C for some PRSs B,C.

B has only one condition: math id(n, x), for some integer n. C is a PRS with

math id(m,x = x) and holds(m) as conditions, for an integer m. In this example,

Mref (B) = {x}, and Mref (C) = {x, x = x}. Note, that the PRS contruction

ensures that there is at least one variable between “For all” and the formula.

Definition 4.2.2. Quantifier over a set

Let X = {x1, ..., xn} be a finite set. Then we define ∀X ϕ as ∀x1, ..., xn ϕ. If all

xi are variables, and ϕ is a formula, then ∀X ϕ is also a formula.

Note that we assumed that we have a way of ordering the elements of the

set X, which is normally not the case. This could cause a problem because for
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example, if X = {x, y}, then ∀X ϕ could be either ∀x, y ϕ or ∀y, x ϕ. But since

the order of the variables in simultaneous quantification is not important, all

possible interpretations are equivalent.

For example, let A be a PRS with Mref (A) = {x1, ..., xn}. Then ∀ Mref (A) ϕ

stands for ∀x1, ..., xn ϕ. We will use this, when we define the Formula Image of

a PRS with quantification conditions.

Definition 4.2.3. The Formula Image FI of a PRS

Let E be an empty PRS, A be a non-empty, non-structure PRS with conditions

γ1, .., γn. Let B,C be non-structure PRSs, T be a theorem PRS with goal GT

and body BT , and L be a lemma PRS with goal GL and body BL.

FI is a map from the set of PRSs into the set of sequences of first order

formulas.� FI(E) = 〈⊤〉� FI(A) =
⊕n

i=1
β(γi)� FI(T ) = FI(GT )� FI(L) = FI(GL).

Where β maps PRS conditions to sequences of first order formulas as follows:� β(holds(ϕ)) = 〈ϕ〉� β(math id(X,Y )) = 〈〉 for all Drefs X, and all Mrefs Y .� β(B) = FI(B)� β(¬B) = ¬FI(B)� β(B := C) = 〈∀ free(
∧
FI(B) ↔

∧
FI(C))−X

∧
FI(B) ↔

∧
FI(C)〉. X

is the set of all free variables of the premises of this definition condition.� β(B → C) = 〈∀ Mref (B) −X ϕi | 〈ϕi〉 = FI(C)〉 if FI(B) = 〈〉. X is the

set of all free variables of the premises of this implication condition.� β(B → C) = 〈∀ free(
∧
FI(B)) − X

∧
FI(B) → ϕi | 〈ϕi〉 = FI(C)〉

if FI(B) 6= 〈〉. X is the set of all free variables of the premises of this

implication condition.� β(B => C) = 〈∀ free(
∧
FI(B)) − X

∧
FI(B) → ϕi | 〈ϕi〉 = FI(C)〉, if

C has conditions ϕ1, .., ϕn and ϕn 6= contradiction. X is the set of all free

variables of the premises of this assumption condition.
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∧
FI(B)〉, if C has conditions ϕ1, .., ϕn and ϕn =

contradiction� β(contradiction) = ⊥

Note that as stated in the introduction, we assume that holds conditions have

formulas as arguments.

The definition of the formula image of a PRS is not complete without the

definition of the premises of a PRS condition:

Definition 4.2.4. The Premises of PRSs and PRS conditions

Let Θ be a finite sequence of first order formulas. Let A be a PRS with conditions

γ1, .., γn. Let 1 ≤ i ≤ n, and B be the PRS with conditions γ1, .., γi−1.

The premises of a PRS, or a PRS condition, is a finite sequence of first order

formulas. Unless noted otherwise, the premises of a PRS is the empty sequence.

If the PRS A has the premises Θ then the premises of the PRS condition γi is

the sequence Θ + FI(B). Furthermore, we define for a PRS condition γ with

premises Θ:� If γ = B for a non-structure PRS B, the premises of B is Θ.� If γ = ¬B for a PRS B, the premises of B is Θ.� If γ is a definition condition B := C, the premises of B and C is Θ.� If γ is an implication condition B → C, the premises of B is Θ, and the

premises of C is Θ + FI(B).� If γ is an assumption condition B => C, the premises of B is Θ, and the

premises of C is Θ + FI(B).� If γ is a theorem PRS T ,with body B and goal G, the premises of B is Θ,

and the premises of G is Θ + FI(B).� If γ is a lemma PRS L, with body B and goal G, the premises of B is Θ,

and the premises of G is Θ + FI(B).

The Calculus Definition

The Naproche calculus, which we are going to define now, is based on an already

given first order calculus P . Note that in the Naproche system, this calculus is

implemented by an ATP. Fix a first order calculus P for this section.

Definition 4.2.5. Derivable in a Calculus

Let Γ be a sequence of formulas and ϕ be a formula. We write Γ ⊢P ϕ if we

can derive ϕ from the formulas in Γ in P . For another sequence of formulas

Ψ = 〈ψ1, ..ψn〉, we write Γ ⊢P
seq Ψ if Γ ⊢P ψi is true for all 1 ≤ i ≤ n.
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Definition 4.2.6. The Naproche Calculus

Let Θ be a finite sequence of formulas. As described at the beginning of this

section, we assume that holds conditions have a formula as argument.

We define derivability under premises for PRSs: Let A be a PRS with condi-

tions γ1, ..., γn, which is derivable under the premises Θ.� Empty PRS

Any empty PRS is derivable under all premises.� holds condition

Let ϕ be a formula such that Θ + FI(A) ⊢P ϕ.

Then the PRS B with conditions γ1, ..., γn, holds(ϕ) is derivable under the

premises Θ� non-structure PRS condition

Let C be a PRS, which is derivable under the premises Θ + FI(A).

Then the PRSB with conditions γ1, ..., γn, C is derivable under the premises

Θ.� ¬PRS condition

Let C be a PRS and Θ + FI(A) ⊢P
seq ¬FI(C).

Then the PRS B with conditions γ1, ..., γn,¬C is derivable under the premi-

ses Θ.� Definition condition

Let C,D be PRSs.

Then the PRS B with conditions γ1, ..., γn, C := D is derivable under the

premises Θ.� Quantifier and Implication condition

Let C,D be PRSs. Let Θ + FI(A) + FI(C) ⊢P
seq FI(D).

Then the PRS B with conditions γ1, ..., γn, C → D is derivable under the

premises Θ.� Assumption condition

Let C,D be PRSs and Θ + FI(A) + FI(C) ⊢P
seq FI(D).

Then the PRS B with conditions γ1, ..., γn, C => D is derivable under the

premises Θ.� contradiction condition

Let Θ + FI(A) ⊢P ⊥.

Then the PRS B with conditions γ1, ..., γn, contradiction is derivable under

the premises Θ.� Theorem PRS condition

Let B be a PRS, which is derivable under the premises Θ + FI(A) ,and G



46 CHAPTER 4. THE NAPROCHE CALCULUS

be a PRS , which is derivable under the premises Θ +FI(A) +FI(B). Let

T be the theorem PRS with goal G and body B.

Then the PRS C with conditions γ1, ..., γn, T is derivable under the premises

Θ.� Lemma PRS condition

Let B be a PRS, which is derivable under the premises Θ + FI(A) ,and G

be a PRS , which is derivable under the premises Θ +FI(A) +FI(B). Let

L be the lemma PRS with goal G and body B.

Then the PRS C with conditions γ1, ..., γn, L is derivable under the premises

Θ.

Definition 4.2.7. Naproche Acceptable PRS

A PRS A is Naproche acceptable, if it is derivable under the premises 〈〉, the

empty sequence.

We have defined two concepts which sound quite similar: The premises of a

condition, and derivability under premises. This similarity is intentional. The

premises of a PRS condition is the sequence which is used in the derivation of

that PRS condition. For example, for a PRS A which is a condition in a Naproche

acceptable PRS, the premises of A are the premises under which A needs to be

derivable.

4.2.1 Natural Language and Proof Representation Structures

After having defined the sequent calculus in chapter 2, the Naproche language and

general PRS in chapter 3, and the Naproche calculus for PRS in this chapter, we

will now take a look at the connection of those ideas. We will consider questions

like: Can every Naproche acceptable PRS be created by an appropriate discourse

in the Naproche language? Can every derivable sequent be ’translated’ into a

PRS?

We use the PRS construction algorithm for the proofs in the section. Re-

member that 3.2.4 showed the contruction of a PRS by example. Chapter 5 and

6 in [13] have the details.

Lemma 4.2.1. There are Naproche acceptable PRSs, such that those PRSs can-

not be created by any discourse written in the Naproche language.

Proof: Let A0 be the empty PRS with no conditions or referents.

Take A1 as the PRS having only A0 as condition. Then, we define A2

as the PRS having only A1 as condition. Recursively, we define An+1

as the PRS which only has An as condition. By this construction, we

can get PRS of arbitrary depth.
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The empty discourse gets translated into the empty PRS A0. But al-

ready A1 cannot get created by a discourse in the Naproche language.

The construction algorithm translates sentences in the Naproche lan-

guage into PRS conditions. Such PRS conditions can, of course, be

PRSs, but these PRSs are never empty. Therefore, all An with n ≥ 1

cannot be produced by the Naproche system. qed

Note that this proof heavily depends on the PRS construction algorithm and

the fact that it never creates empty PRSs as conditions. In upcoming versions

of the Naproche system, the algorithm, as well as the PRS definitions, will most

likely change, and with some consideration it should be possible to falsify the

above lemma.

When we consider the relation between the the sequent calculus and PRSs

we can prove some kind of completeness statement:

Lemma 4.2.2. Let Γ ⊢ ϕ. Let Γ = 〈γ1, ..., γn〉. Then there is a PRS A such that

FI(A) = ∀free(γ1) γ1 → (∀free(γ2) − free(γ1) γ2 → (...(∀X γn → ϕ)...))

We always quantify over the variables which are free in the current formula γi,

but not free in any γj for 1 ≤ j < i. So, X denotes all variables which are free

in γn, but not free in any γi for 1 ≤ i < n.

Proof: Let Γ = 〈γ1, ..., γn〉. Then the discourse D = [ Let γ1. ... Let

γn. Then ϕ. ] gets translated into a PRS with the required property.

qed

Furthermore, if we only consider the formula image of a PRS A, then the

Naproche language is expressive enough to find a discourse D, such that the to

D corresponding PRS has the same formula image as A. We get the following

theorem:

Theorem 4.2.3. Let A be a Naproche acceptable PRS. Then there is a discourse

D, which, when parsed by the Naproche system, produces a PRS B for which

holds FI(B) = FI(A).

Proof: Let A be a Naproche acceptable PRS with formula image

FI(A) = 〈γ1, ..., γn〉. Define D = [γ1....γn.], then FI(B) = FI(A).

qed

4.2.2 The Implementation of the Naproche Calculus

This diploma project was not only about the theoretical calculus, but also about

its implementation. In this section, we show by example that the implementation

and the calculus are in principle equivalent: A PRS is Naproche acceptable if the
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implemented algorithm accepts it, and if a PRS gets accepted by the checking

algorithm then it is Naproche acceptable.

The complete sourcecode can be found in the appendix A or, if you have

the Naproche system installed, in the file checker.pl. The implementation was

done by Dörthe Arndt and the author, with additional help of the trainees

Bhoomija Ranjan and Shruti Gupta. Note that the code is written in the

Prolog programming language. Let us look at the predicate check prs first. The

code is:

check_prs(PRS,Mid_begin,Mid_end,Premises_begin,Premises_end,Check_trigger) :-

PRS = id~Id..conds~Conds,

!,

% discourse_to_prs gives us the conditions in the wrong order. Therefore we have to

% reverse them before we can check them.

reverse(Conds,Reversed_Conds),

% Check whether PRS is a structure PRS, in our case a lemma or a theorem

% e.g. check if Id = lemma.. or Id = theorem..

( ( atom_concat(theorem,_,Id) ; atom_concat(lemma,_,Id) ) ->

(

%theorem / lemma case

Reversed_Conds = [Goal,Proof],

% Get the Math IDs and the Premises of the Goal, but don’t check

check_prs(Goal,Mid_begin,Goal_Mid_end,Premises_begin,Goal_Premises_end,nocheck),

% Check the Proof with updated Math IDs, discard Math IDs at the end

% Assumptions for Theorem must be made again!

check_prs(Proof,Goal_Mid_end,_,Premises_begin,Proof_Premises_end,Check_trigger),

% If Check_trigger = check see if Proof is a proof for Goal

( Check_trigger = check ->

( append(Premises_begin,Thm,Goal_Premises_end),

fof_check(Proof_Premises_end,Thm,Id)

);

true

),

% Set New Math_Ids & Premises

Goal_Mid_end = Mid_end,

Premises_end = Goal_Premises_end

)

;

% If PRS is not a theorem just check the conditions

check_conditions(Id,Reversed_Conds,Mid_begin,Mid_end,Premises_begin,

Premises_end,Check_trigger)

).

check prs has six arguments, namely PRS,Mid begin,Mid end,Premises begin,

Premises end,Check trigger. PRS is the PRS which we want to check. Mid begin

and Mid end store the math id conditions which are accessible before and after

parsing the PRS. Premises begin and Premises end are lists which contain the

active premises, as first order formulas, before and after the parsing of the PRS,

and Check trigger is used to indicate whether we want to check the conditions of

the PRS.
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The programs first checks whether the input PRS is a normal, meaning non-

structure, PRS or a theorem/lemma PRS.

% Check whether PRS is a structure PRS, in our case a lemma or a theorem

% e.g. check if Id = lemma.. or Id = theorem..

( ( atom_concat(theorem,_,Id) ; atom_concat(lemma,_,Id) ) ->

Let us first look at the simpler case of the input PRS being a non-structure

PRS:

% If PRS is not a theorem just check the conditions

check_conditions(Id,Reversed_Conds,Mid_begin,Mid_end,Premises_begin,

Premises_end,Check_trigger)

The checking algorithm accepts the PRS, if it accepts all the conditions of

the PRS. When you look at the code of the check conditions predicate, you see

that they are checked sequentially. For a PRS with n conditions, the algorithm

only tries to check the nth condition, after the first n−1 conditions got accepted.

This corresponds to the general layout of our calculus: We add one condition

after the other. If we want to derive a PRS with n conditions, then we first need

to derive the PRS which contains the first n− 1 conditions.

The second option in the check prs predicate is that the input PRS is a

structure PRS, meaning that it is a theorem or a lemma PRS.

%theorem / lemma case

Reversed_Conds = [Goal,Proof],

% Get the Math IDs and the Premises of the Goal, but don’t check

check_prs(Goal,Mid_begin,Goal_Mid_end,Premises_begin,Goal_Premises_end,nocheck),

% Check the Proof with updated Math IDs, discard Math IDs at the end

% Assumptions for Theorem must be made again!

check_prs(Proof,Goal_Mid_end,_,Premises_begin,Proof_Premises_end,Check_trigger),

% If Check_trigger = check see if Proof is a proof for Goal

( Check_trigger = check ->

( append(Premises_begin,Thm,Goal_Premises_end),

fof_check(Proof_Premises_end,Thm,Id)

);

true

),

% Set New Math_Ids & Premises

Goal_Mid_end = Mid_end,

Premises_end = Goal_Premises_end

)

The input PRS has two conditions. Both are PRSs, one is the goal and one

is the proof.

%theorem / lemma case

Reversed_Conds = [Goal,Proof],

We run check prs on the goal.

% Get the Math IDs and the Premises of the Goal, but don’t check

check_prs(Goal,Mid_begin,Goal_Mid_end,Premises_begin,Goal_Premises_end,nocheck),
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Note that the check trigger parameter has nocheck as argument. Starting

check prs with nocheck basically gives the first order representation, the formula

image, of the PRS. Here, the formula image of the PRS is added to the premises.

The variable Goal Premises end contains a list which starts with the premises

which we had at the start of this routine, Premises begin, and ends with the

formula image of the goal.

We then check the proof PRS under the premises which are stored in the

list Premises begin. After this is done, the variable Proof Premises end contains

a list which starts with Premises begin and ends with the formula image of the

proof PRS.

% Check the Proof with updated Math IDs, discard Math IDs at the end

% Assumptions for Theorem must be made again!

check_prs(Proof,Goal_Mid_end,_,Premises_begin,Proof_Premises_end,Check_trigger),

If the check trigger is set to check, we extract the formula image of the goal

PRS from Goal Premises end and save it as Thm. Then we use the ATP to check

whether Proof Premises end implies Thm.

( Check_trigger = check ->

( append(Premises_begin,Thm,Goal_Premises_end),

fof_check(Proof_Premises_end,Thm,Id)

);

true

),

Let us compare this to the Theorem PRS condition from the Naproche cal-

culus (Lemma PRS condition is analogue): The body PRS has to be derivable

under the premises of the theorem PRS. This corresponds to the Naproche sys-

tem being able to check the proof PRS using only Premises begin. The second

condition is that the goal PRS is derivable under the premises of the theorem

PRS, plus the formula image of the body PRS. The line

fof_check(Proof_Premises_end,Thm,Id)

ensures exactly this. Only if these two conditions are fulfilled can we add a

theorem PRS as condition in our calculus, and only if these two conditions are

fulfilled does the Naproche system accept a theorem PRS.

For a second example, let us consider when the Naproche system accepts a

negated PRS:

% ------------------------- Negation ----------------------------------------

% X = neg(PRS)

% Takes all premises from PRS and negates them.

% Check occurs after the negation.

check_conditions(Id,[neg(PRS) | Rest ],Mid_begin,Mid_end,Premises_begin,

Premises_end,Check_trigger) :-

!,

% Get the Premises and Mids of PRS
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% Check_trigger is nocheck as we want to prove the negates formulas!

check_prs(PRS,Mid_begin,New_Mid_begin,Premises_begin,Tmp_Premises_end,nocheck),

% Get the new premises and negate them

append(Premises_begin,Premises_PRS,Tmp_Premises_end),

negate_formulas(Premises_PRS,Negated_Premises_PRS),

% Check the Premises if Check_trigger = check

% otherwise just append them

( Check_trigger = check ->

fof_check(Premises_begin,Negated_Premises_PRS,Id);

true

),

append(Premises_begin,Negated_Premises_PRS,New_Premises_begin),

% Check the rest of the conditions with New_Mid_begin and New_Premises_begin

check_conditions(Id,Rest,New_Mid_begin,Mid_end,New_Premises_begin,

Premises_end,Check_trigger).

Using the check prs predicate with nocheck as argument, we get the formula

image of the negated PRS:

% Get the Premises and Mids of PRS

% Check_trigger is nocheck as we want to prove the negates formulas!

check_prs(PRS,Mid_begin,New_Mid_begin,Premises_begin,Tmp_Premises_end,nocheck),

We use append to extract the formula image of the negated PRS and negate

it.

% Get the new premises and negate them

append(Premises_begin,Premises_PRS,Tmp_Premises_end),

negate_formulas(Premises_PRS,Negated_Premises_PRS),

We check whether the ATP can prove the negated formula image from the

premises:

% Check the Premises if Check_trigger = check

% otherwise just append them

( Check_trigger = check ->

fof_check(Premises_begin,Negated_Premises_PRS,Id);

true

),

And if that does succeed, we append the negated formula image to the

premises we had so far, and then try to check the rest of the conditions:

append(Premises_begin,Negated_Premises_PRS,New_Premises_begin),

% Check the rest of the conditions with New_Mid_begin and New_Premises_begin

check_conditions(Id,Rest,New_Mid_begin,Mid_end,New_Premises_begin,

Premises_end,Check_trigger).

This corresponds to the ¬PRS condition in the Naproche calculus: If we can

prove the negation of the formula image from the premises, then we can add the

negated PRS as condition.

We saw on two examples that the Naproche calculus and the implemented

Naproche algorithm are equivalent. Apart for one exception, natural language

quantification, one can similarly show the equality for the rest of the calculus.

This exception a known bug and will be fixed in the next version.
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4.3 Correctness and Completeness

of the Naproche Calculus

For any calculus, we would like to know whether is is correct and/or complete. In

our case, we have two problems. First, our PRS calculus heavily depends on the

first order calculus we are using. And second, we have no way to check whether

a definition is reasonable. However, if we restrict ourselves, we can get some

results.

In the sequel, ⊢P means derivable in the calculus P , and ⊢ means derivable

in the sequent calculus which we defined in in chapter 2. Remember that our

sequent calculus is correct and complete. If P is complete, then Γ ⊢ ϕ implies

Γ ⊢P ϕ, and if P is correct, then Γ ⊢P ϕ implies Γ ⊢ ϕ. We also get that if P is

correct, then Γ ⊢P
seq Θ implies Γ ⊢seq Θ.

Theorem 4.3.1. Completeness of the Naproche Calculus

If P is a complete calculus, then the Naproche Calculus is complete. More specif-

ically, if Γ |= ϕ, then let A be the PRS which has one condition γ, which is an

assumption condition with
∧

Γ in the left-hand side PRS and ϕ in the right-hand

side PRS. Then A is Naproche acceptable.

Proof: Obvious. qed

Theorem 4.3.2. Correctness of the Naproche Calculus

If P is a correct calculus, then the Naproche Calculus is correct. Meaning that if A

is a Naproche acceptable PRS without definition conditions, then 〈〉 ⊢seq FI(A).

Proof: We prove the stronger result that if A is derivable under the

premises Θ, then Θ ⊢seq FI(A), by induction over the depth of the

PRS. This implies the theorem because every Naproche acceptable

PRS is derivable under the empty sequence. Hence, for a Naproche

acceptable PRS A we would get that 〈〉 ⊢seq FI(A).

We begin the proof by considering empty PRSs, which have depth 0.

For an empty PRS E, FI(E) = ⊤, and ⊤ is always derivable in our

first order calculus (Lemma 2.3.5). So, assume that the result holds

for all PRSs with depth d ≤ m− 1, m ≥ 1. For PRS with depth m,

we prove the theorem by induction over the number of conditions.

Let A be a PRS, which is derivable under the premises Θ, and has

depth d(A) = m. If A has no conditions, then A is the empty PRS

and we are done. So, assume that A has conditions γ1, ..., γn, and

that the result holds for all PRS B with depth d(B) ≤ m and less

than n conditions.
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Because A is derivable under the premises Θ, the PRS A′ with con-

ditions γ1, ...γn−1 is derivable under the premises Θ. All conditions

of A′ are also conditions of A, hence depth d(A′) ≤ d(A) = m. Us-

ing the induction hypothesis, we can conclude that Θ ⊢seq FI(A
′).

Remember that FI(A) = FI(A′) + β(γn). We consider the different

options for the last condition γn.

γn = holds(ϕ)

Then Θ + FI(A′) ⊢P ϕ, and since P is correct, Θ + FI(A′) ⊢P ϕ

implies Θ+FI(A′) ⊢ ϕ. Furthermore, FI(A) = FI(A′)+〈ϕ〉. Hence,

we can use the last two statements to conclude Θ ⊢seq FI(A).

γn = B, for a non-structure PRS B

B is derivable under the premises Θ+FI(A′). Since d(B) < m, we can

use the induction hypothesis and conclude Θ + FI(A′) ⊢seq FI(B).

Therefore Θ ⊢seq FI(A).

γn = ¬B, for a non-structure PRS B

By the calculus definition, Θ + FI(A′) ⊢P
seq ¬FI(B). Because P is

correct, it follows that Θ + FI(A′) ⊢seq ¬FI(B). Thus, we get that

Θ ⊢seq FI(A).

γn = C → D, for PRSs C,D

Since γn is a condition in A, we know that d(C), d(D) < d(A) = m.

By the formula image definition, β(C → D) = 〈∀ free(
∧
FI(C)) −

free(
∧

(Θ+FI(A′)))
∧
FI(C) → ϕi | 〈ϕi〉 = FI(D)〉, and by the cal-

culus definition Θ + FI(A′) + FI(C) ⊢P
seq FI(D). Since P is correct,

we can use Lemma 4.1.3 to conclude Θ+FI(A′) ⊢seq 〈
∧
FI(C) → ϕi |

〈ϕi〉 = FI(D)〉. All variables in the set free(
∧
FI(C)) − free(

∧
(Θ +

FI(A′))) are not free in Θ + FI(A′), and also not free in the sequent

〈∀ free(
∧
FI(C)) − free(

∧
(Θ + FI(A′)))

∧
FI(C) → ϕi | 〈ϕi〉 =

FI(D)〉. Therefore, we can use the ∀ Introduction rule in the se-

quent calculus to get Θ+FI(A′) ⊢seq 〈∀ free(
∧
FI(C))− free(

∧
(Θ+

FI(A′)))
∧
FI(C) → ϕi | 〈ϕi〉 = FI(D)〉. Therefore Θ ⊢seq FI(A).

γn = C => D, for PRSs C,D

By the calculus definition, Θ+FI(A′)+FI(C) ⊢P
seq FI(D). We have

two cases to consider. If the last condition of D is not contradiction,

we proceed like in the implication case.

Else, we have that β(C => D) = 〈¬
∧
FI(C)〉. Since the last con-

dition of D is contradiction, and P is correct, we can apply lemma

4.1.1 to get Θ + FI(A′) + FI(C) ⊢ ⊥. We use lemma 4.1.3, to get

Θ + FI(A′) ⊢
∧
FI(C) → ⊥. Now, a small calculation in the se-

quent calculus gives Θ+FI(A′) ⊢ ¬
∧
FI(C). Together, we conclude

Θ ⊢seq FI(A).
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γn = contradiction

Since P is correct, Θ + FI(A′) ⊢ ⊥, and hence Θ ⊢seq FI(A).

γn = B, for a theorem PRS B with goal GB and body BB

We have that d(GB), d(BB) < d(A) = m, and hence by induction

and the calculus definition it follows that Θ + FI(A′) ⊢seq FI(BB),

Θ + FI(A′) + FI(BB) ⊢seq FI(GB). Putting these two together, we

get Θ + FI(A′) ⊢seq FI(GB) by lemma 4.1.4, and therefore Θ ⊢seq

FI(A).

γn = B, for a lemma PRS B with goal GB and body BB.

This case goes exactly like the theorem PRS case.

qed

Remark. Concerning definition conditions. Note that we did not cover definition

conditions in the theorem. In their normal use, definitions are just abbreviations.

These abbreviations extend our language and cannot be proven. At the moment,

when encountering a definition, the Naproche system simply stores that definition

as a premise, without checking it. In 5.2.2, we consider this problem in more

detail.
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Chapter 5

Practical Limitations and Future

Work

So far, we have looked at the current implementation, as well as the mathemati-

cal, linguistic and computer scientific background of the Naproche system. This

chapter is about its future.

We will first take a look at the practical limitation which the Naproche system

has. Then, we will pick up a few points which we noted during the development

of the current version, and which we think should be improved in the upcom-

ing versions. The last section introduces the actual plans for the work on the

Naproche system, starting from February 2009.

5.1 Practical Limitations of the Naproche System

The aim of the Naproche system is rather idealistic. A natural language proof

checker, a program, which can process real natural language and deduce like,

or better than, a human. Considering that even in normal conversations it is

not always clear what the other person means, how can we teach a computer to

understand us? In the section we will look at some practical limitation and how

they affect our goal.

5.1.1 Correctness and Completeness

In the last chapter, we proved the theoretical correctness and completeness of

the Naproche calculus. The one assumption we had for those proofs was that the

calculus we use is complete and correct. In the Naproche system, this calculus

comes from an ATP. If the ATP can derive a formula ϕ from some premises Γ,

then ϕ is derivable from Γ in the calculus. Unfortunately, there is not one ATP
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for which we know that it is correct and complete. Let us take a closer look at

the problem, beginning with completeness.

The first thing to note is that some, if not most, ATPs are incomplete by

design [25]. Furthermore, even if the ATP is complete in theory, there could still

be errors somewhere in the code. Assuming that this is not the case, we still have

the Naproche system, which could also have some bugs. Even if we would have a

complete ATP system and no bugs in neither the ATP nor the Naproche system

there is one more potential source for incompleteness: time. Naproche limits the

time which the prover can take to discharge an obligation. Meaning, we could

miss a solution just because we forced the ATP to stop too early.

While incompleteness is acceptable for an ATP, incorrectness is not. ATPs

should be correct, but, of course, there could always be error in the program.

Fortunately for us, there are two methods which can use to ensure that a program

is doing what it is supposed to do. First, we can use software verification methods

to check our code. Second, if software verification is too tedious or impractical,

as [25] suggests, we can use the rather unmathematical concept of trust. Just

by running enough examples, of which we know the correct answer, we can test

the Naproche system/the ATP and, given that we do get the correct answers,

establish some kind of trust in the system. For the Naproche system in particular,

we can try the input on several ATPs and compare the results.

This leaves us with the time constraint problem, which is hard, if not im-

possible to avoid. If we want to maintain useability we need time constraints on

the prover, which means that we do get incompleteness. (Unless the prover can

instantly solve any given problem, which is not the case). In praxis, we could

handle this problem by asking the user to change the proof in order to create

easier obligations for the prover.

Altogether, we get the following: Using theoretical considerations for the

foundations, software verification techniques for the implementation and dif-

ferent provers for comparison, we can be quite sure that a positive answer by

the Naproche system, (Proof Accepted) means that the input is correct. If the

Naproche system does not accept a given input, then this does not imply the in-

correctness of the input. We can only conclude that the input is either incorrect,

or that the tools we use are too weak to prove it. In other words, the Naproche

system is incomplete, but we can hope for correctness. While this might seem

discouraging at first, we should not forget that humans have the same limitation.

5.1.2 Natural Language

One of the goals of the Naproche system is Natural Mathematical Language as

input format. At some point in the program, the input has to be translated into

first (or higher) order logic. One problem which does arise here is that natural

language cannot always be uniquely translated. There are cases, when several
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translations are possible. For example A and B implies C could be read as

(A ∧B) → C or as A ∧ (B → C).

So far, Naproche, as well as its competitors Plato [32] and SAD [20], restrict

their input and define unique translations into logic. Attempto [6] showed that

one can get quite far with this approach. However, the best you can hope for is

an input language which, when reading it, looks like natural English, but when

you want to write a text for the program to check, you will have to learn the

input language first.

Alternatively to the controlled language approach, one could allow ambiguities

and try to work with them. This, unsurprisingly, leads to quite some problems.

First of all, several translations mean more things to check. For example, if we

take a text with n sentences, and every sentence has two possible translations,

then, as a basic approach, we need to check 2n translations for correctness, com-

pared to only n if we do not allow ambiguity. Even if this exponential growth

was acceptable, we would also need to redefine when a text is accepted. It is

quite likely that not every possible translation gives the same result. When do

we accept a text as correct? Only if every translation is accepted? Then the

user would probably not be able to write a normal text. Only if there is a correct

translation? This correct translation could be completely different from what the

author intended to say. Then the program would say Proof Accepted even though

what the author intended to say was wrong.

One way of dealing with text ambiguities is to ask the user which of the

available options was meant. This, however, would move the Naproche away

from automated proof checking, which is without user interaction, and towards

proof assisting. If we want to go into this direction, we should take a closer look

at Coq [5] and Isabelle [18].

In my personal opinion, we should stay with the controlled language concept

for the time being. Attempto managed to make a part of a language, English,

unambiguous (The current vocabulary file has close to 100.000 entries [19]). The

mathematical language is a tiny subset of English, and furthermore, it is already

quite precise in its meaning. The controlled language would probably be not too

far away from what mathematicians actually use, and therefore be easy to learn

and teach. The Naproche project, as a group of linguists and mathematicians,

should be able to get a lot more out of the concept of a restricted language for

mathematics, than what is currently possible.

5.2 Possible Improvements

What follows is a list of things we noticed in the development of the last version of

the Naproche system, and which we would like to change for upcoming versions.
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5.2.1 Usability and Communication

At the moment, using Naproche is far from simple. Even if we consider, that it

is a scientific project which is still in development, there is a lot we can improve.

Installation

To get Naproche up and running, one needs to install more than 5 different

programs and even change a few lines in the code. On top of that, not one person

knows all the things which one needs to consider, when installing it. Setting up

a decent installation routine is a must for future versions.

Documentation

While the sourcecode documentation is quite good, the end user documentation

is almost non-existent. The input language is only partially defined, we have no

tutorials, nothing which helps a end-user.

Website

Nowadays, the internet is the primary source of information. The Naproche

Website is both outdated and rudimentary. We need up to date content, the

possibility to download recent and older versions, as well as pdfs of all papers

about Naproche.

I propose, that we schedule cycles, for example every 6 month, in which we

release updated versions of the Naproche system. These versions are released on

the website, complete with a working installer as well as proper documentation

for the end user.

5.2.2 Proving

The actual proving process of the Naproche system is very underdeveloped. We

already mentioned a few issues in the last chapter. The following are ideas for

improving the capabilities of the Naproche system.

Definitions

The Naproche system treats definition sentences as equivalence statements. While

this can already cause logic problems, we also might get problems with the pure

amount of definitions. We will consider the logic problems first:

In order to check that conditions do make sense, there are a few things we can

do. One idea is the following algorithm: First, we check whether what we define

is a new word. If it is then we have a definition which is simply an abbreviation.
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If we do not define a new word, but instead use one from the vocabulary, we

check if there is already a definition associated with that word. If yes, we check

for equivalence of those two definitions. If they are equivalent, everything is fine.

If not we should report an error. If there is no definition for that word then it is

ok to create one.

Alternatively, definitions could be treated as additional assumptions. Chang-

ing the semantics to “This proof is correct under these definitions”. One drawback

of this approach is that the formulas that the ATP has to work with would get

even longer.

For handling definitions, Andriy Paskevych developed the method of defi-

nition expanding [15]. Instead of saving definitions as normal premises, they are

stored separately. The prover gets the text without the definitions first, and only

if it cannot succeed without the definitions does the program provide him with

more information. This way, we can simplify the problem for the prover, which

in return increases the proving capabilities of our program.

Proving on PRS Level

In the calculus, we defined that the formula image of an assumption ended by

a contradiction would be the negated assumption. This is already some kind of

proving on PRS level.

Another proof type, which could be implemented at this level would be proof

by induction or recursions. Generally, a calculus which can be changed while

running the program is thinkable. The user could define when something is

correct. For example, we could have a rule in the calculus which states that

when a statement for the natural numbers holds for 0 and every successor, then

it holds for all natural numbers.

But as one should prove that additions to the calculus are correct, we might

as well just leave everything to the ATP. We need to do more research to see

whether such an option would be useful.

Premises

Eventually, we will have to worry about the power of the underlying prover of

the Naproche system. So far, we did not have any problems but we did not work

with bigger examples either. The more premises you give an ATP, the worse it

will preform. The way we handle premises now we will get proof obligations with

dozens of premises, most of which are unnecessary for the actual proof. In order

to be able to check bigger texts, we need to find a way to keep the amount of

premises for each obligation small.

Mizar [16] handles this problem by explicitly asking for the appropriate theo-

rem for each proof step. Unless you know the entire library by heart, this makes
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writing proofs in Mizar quite tedious. So we do not want to use this concept for

a natural language proof checker.

One idea we had, was the development of some kind of metric for statements.

This metric would continuously be updated. When the prover tries to discharge

an obligation, the ATP first tries to prove it, using only those statements which

are near, according to the metric, the current obligation. If it is not successful,

the algorithm would slowly increase the allowed distance which a statement can

have from the obligation, in order to be considered for the discharge. This way,

we can keep the number of the premises which are used for the proof small. The

method of definition expanding, which we mentioned earlier, would also nicely fit

into this concept.

Such a metric could be based on� The actual distance in the input text.� The kind of statement (Theorem/Lemma/Proof Statement).� The frequency of how often the statement was used in previous proofs.� Explicit reference in the text (e.g. by lemma n ...).

For a useful definition, we will probably need not only more theory, but also

lots of tests on different texts. If we do want to keep the proving part of the

Naproche system in Bonn, I strongly recommend that we do more research in

this area.

5.2.3 XML

In the current version of Naproche, the conversion from the input text to XML

does little more than adding a unique number to each sentence. If we do want to

keep the approach of converting to XML first, we should think about getting more

information from the texmacs file, and, subsequentially, having more information

in the XML. Furthermore, it should be possible for the writer to supply additional

information for Naproche while writing the document. This could also be saved

in the XML.

Either way, it would be necessary to redesign the XML specifications. For

this, we should take a closer look at Michael Kohlhase and his group. They

are working on a semantic markup format for mathematical documents: OMDoc

[12]. This format could replace our current XML standard. It can handle all the

things we need from an XML format right now, and, additionally, it allows the

user to give more information, which in turn could be used in the creation of the

PRS and the proving of the text.

Another benefit of OMDoc would be that we would allow a broader input.

The user would not be forced to use Texmacs. As long as his text is convertible
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into OMDoc, it can be checked by Naproche. This could make Naproche more

appealing to users, which will be more and more important as the development

progresses.

5.3 The Future of Naproche

After all these considerations of possible improvements, what is the actual plan

for the future of Naproche? At the Conference on Intelligent Computer Mathe-

matics, we had the opportunity to meet the VeriMathDoc group which is based in

Saarbrücken and Bremen. It became obvious that we have very similar ideas and

concepts, and that we therefore could both benefit from a cooperation. VeriMath-

Doc is particularly strong in all IT aspects, be it theorem proving, programming

or program interaction. Naproche, on the other hand, has its focus on natural

language and mathematics.

The plan is that, starting from autumn 2008, the VeriMathDoc and Naproche

teams will work together. Each team will continue to work on its own project,

but we will share the results of our respective studies as well as the programs

which can be used by both teams.





Chapter 6

Conclusion

In this thesis, we introduced the Naproche project, explained the Naproche sys-

tem in greater detail, and talked about the its limitations. We showed that with

relatively simple means, namely the current Naproche language and the current

Naproche system, it is already possible to formulate and proof such non-trivial

theorems like the Burali-Forti paradox. Such early results suggest that with

further research, it should be easily possible to significantly improve both the

Naproche language as well as the Naproche system.

Even though we are, to our knowledge, so far the only mathematical-linguistic

group which is working in this area, the public reception of the Naproche project

was very good. Conferences, exhibitions like the “Wissenschaftszelt”, and our

Naproche seminar gave us the opportunity to talk to scientists from all three

involved areas, mathematics, linguistics and computer science. Most of them

seemed very interested in our work, and were eager for hear about new results.

In conclusion, the author argues that the Naproche project is very promising

and should be pursued further. Not only are more and better results feasible,

but also asked for by the scientific community.
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Appendix A

The Sourcecode of checker.pl

:-module(check_prs,[check_prs/6]).

:- use_module(library(pldoc)).

:- ensure_loaded(naproche(gulp4swi)).

:- use_module(’premises’).

:- use_module(’fof_check’).

:- use_module(naproche(prs)).

% assumption marker

:- op(901, xfx, user:(=>)).

% implication marker

:- op(901, xfx, user:(==>)).

% definition marker

:- op(901, xfx, user:(:=)).

PRS_A := PRS_B :-

(is_prs(PRS_A);is_neg_prs(PRS_A)),

(is_prs(PRS_B);is_neg_prs(PRS_B)).

PRS_A => PRS_B :-

(is_prs(PRS_A);is_neg_prs(PRS_A)),

(is_prs(PRS_B);is_neg_prs(PRS_B)).

PRS_A ==> PRS_B :-

(is_prs(PRS_A);is_neg_prs(PRS_A)),

(is_prs(PRS_B);is_neg_prs(PRS_B)).

/** <module> High level proof checking predicate

*

* This module provides predicates to check a PRS using a first order prover.

*

*/

%% check_prs(+PRS:prs,+Mid_begin:list,-Mid_end:list,+Premises_begin:list(DOBSOD),

%% -Premises_end:list(DOBSOD),+Check_trigger:(check | nocheck)) is det.

%

% True if PRS is logically valid.

%

% Depending on the Check_trigger, the PRS is translated into TPTP FOL and checked,
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% using the prover Prover if Check_trigger = check, or just translated into TPTP FOL

% if Check_trigger = nocheck.

% A PRS is logically valid, if all its conditions are logically valid.

%

% NOTE: In order to actually check the input you need to define the following predicates:

% check_time(Time)

% check_prover(Checker)

% check_size(Outputsize)

% These are normally defines in load.pl. fof_check will not work without them!

%

% @param PRS is the PRS to be checked.

% @param Mid_begin is the list of available Math_IDs before the start of the predicate.

% @param Mid_end is the list of available Math_IDs at the end of the predicate

% @param Premises_begin is the list of premises from which we try to prove the PRS.

% @param Premises_end is the list containing Premises_begin and every formula we

% proved through the PRS.

% @param Check trigger gives us the option to either try to prove every formula we

% encounter ( check ) or to just go through the structure of the proof without

% running a prover (nocheck).

%

%

% @tbd Mid handling in Negation case. Should they be negated?

check_prs(PRS,Mid_begin,Mid_end,Premises_begin,Premises_end,Check_trigger) :-

PRS = id~Id..conds~Conds,

!,

% discourse_to_prs gives us the conditions in the wrong order. Therefore we have to

% reverse them before we can check them.

reverse(Conds,Reversed_Conds),

% Check whether PRS is a structure PRS, in our case a lemma or a theorem

% e.g. check if Id = lemma.. or Id = theorem..

( ( atom_concat(theorem,_,Id) ; atom_concat(lemma,_,Id) ) ->

(

%theorem / lemma case

Reversed_Conds = [Goal,Proof],

% Get the Math IDs and the Premises of the Goal, but don’t check

check_prs(Goal,Mid_begin,Goal_Mid_end,Premises_begin,Goal_Premises_end,nocheck),

% Check the Proof with updated Math IDs, discard Math IDs at the end

% Assumptions for Theorem must be made again!

check_prs(Proof,Goal_Mid_end,_,Premises_begin,Proof_Premises_end,Check_trigger),

% If Check_trigger = check see if Proof is a proof for Goal

( Check_trigger = check ->

( append(Premises_begin,Thm,Goal_Premises_end),

fof_check(Proof_Premises_end,Thm,Id)

);

true

),

% Set New Math_Ids & Premises

Goal_Mid_end = Mid_end,

Premises_end = Goal_Premises_end

)

;

% If PRS is not a theorem just check the conditions

check_conditions(Id,Reversed_Conds,Mid_begin,Mid_end,Premises_begin,

Premises_end,Check_trigger)

).

% ----------------------------------- check_neg_prs --------------------------------------

%% check_neg_prs(+NEG_PRS:neg(prs),+Mid_begin:list,-Mid_end:list,

%% +Premises_begin:list(DOBSOD),-Premises_end:list(DOBSOD),



67

%% +Check_trigger:(check | nocheck)) is det.

%

% True if NEG_PRS is logically valid, takes a negated PRS as input.

%

% Depending on the Check_trigger, the NEG_PRS is translated into TPTP FOL and checked,

% using the prover Prover if Check_trigger = check, or just translated into TPTP FOL

% if Check_trigger = nocheck.

% A NEG_PRS is logically valid, if all its conditions are logically valid.

%

% NOTE: In order to actually check the input you need to define the following predicates:

% check_time(Time)

% check_prover(Checker)

% check_size(Outputsize)

% These are normally defines in load.pl. fof_check will not work without them!

%

% @param NEG_PRS is the negated PRS to be checked.

% @param Mid_begin is the list of available Math_IDs before the start of the predicate.

% @param Mid_end is the list of available Math_IDs at the end of the predicate

% @param Premises_begin is the list of premises from which we try to prove the PRS.

% @param Premises_end is the list containing Premises_begin and every formula we

% proved through the PRS.

% @param Check trigger gives us the option to either try to prove every formula we

% encounter ( check ) or to just go through the structure of the proof without

% running a prover (nocheck).

check_neg_prs(neg(PRS),Mid_begin,Mid_end,Premises_begin,Premises_end,Check_trigger) :-

!,

% Check the PRS

check_prs(PRS,Mid_begin,Mid_end,Premises_begin,PRS_Premises_end,Check_trigger),

% Get the premises which are added by the PRS

append(Premises_begin,PRS_Premises,PRS_Premises_end),

% Negate the PRS_Premises

negate_formulas(PRS_Premises,Negated_Premises),

% Append the negated Premises

append(Premises_begin,Negated_Premises,Premises_end).

% ----------------------------------- check_conditions ------------------------------

%% check_conditions(+Id:atom,+Conditions:list,+Mid_begin:list,-Mid_end:list,

%% +Premises_begin:list(DOBSOD),-Premises_end:list(DOBSOD),

%% +Check_trigger:(check|nocheck)) is det.

%

% True if every Element of the List is logically valid, or if the list is empty

%

% check_conditions checks the Elements of the List one ofter the other.

%

% Possible Conditions X are:

%

% * X is a PRS

% * X = math_id(_,_)

% * X = holds(Y)

% * X = PRS_A := PRS_B Definition

% * X = PRS_A => PRS_B Assumption

% * X = neg(PRS) Negation

% * X = PRS_A ==> PRS_B For all

% * X = PRS_A ==> PRS_B Implication

% * X = contradiction Contradiction

%

% NOTE: In order to actually check the input you need to define the following predicates:

% check_time(Time)

% check_prover(Checker)

% check_size(Outputsize)

% These are normally defines in load.pl. fof_check will not work without them!
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%

% @param Id is the ID of the PRS we are checking

% @param Conditions is the list of conditions which we try to prove.

% @param Mid_begin is the list of available Math_IDs before the start of

% the predicate.

% @param Mid_end is the list of available Math_IDs at the end of the predicate

% @param Premises_begin is the list of premises from which we try to prove the PRS.

% @param Premises_end is the list containing Premises_begin and every formula

% we proved through the PRS.

% @param Check trigger gives us the option to either try to prove every formula

% we encounter ( check ) or to just go through the structure of the proof

% without running a prover (nocheck).

% ------------------------- Empty List ----------------------------------------

% Empty list is valid.

% Mid_begin = Mid_end

% Premises_begin = Premises_end

check_conditions(_,[],Mid_begin,Mid_begin,Premises_begin,Premises_begin,_) :- !.

% ------------------------- PRS ----------------------------------------

% X is a PRS

% Check PRS then proceed with the updated Math_IDs and Premises.

check_conditions(Id,[X|Rest],Mid_begin,Mid_end,Premises_begin,

Premises_end,Check_trigger) :-

is_prs(X),

!,

check_prs(X,Mid_begin,X_Mid_end,Premises_begin,X_Premises_end,Check_trigger),

% Use the updated Mid and Premises for the remaining check.

check_conditions(Id,Rest,X_Mid_end,Mid_end,X_Premises_end,Premises_end,Check_trigger).

% ------------------------- math_id(_,_) ----------------------------------------

% X = math_id(_,_)

% Update Mid_begin and proceed

check_conditions(Id,[X|Rest],Mid_begin,Mid_end,Premises_begin,

Premises_end,Check_trigger) :-

X = math_id(_,_),

!,

append(Mid_begin,[X],New_Mid_begin),

check_conditions(Id,Rest,New_Mid_begin,Mid_end,Premises_begin,Premises_end,Check_trigger).

% ------------------------- holds(_) ----------------------------------------

% X = holds(Y)

% We use the Prover to check whether Y follows from the premises.

% If yes, then the TPTP representation of Y is added to the premises, else

% we throw an error.

% Check_trigger specifies whether we do the actual check or just update the premises.

check_conditions(Id,[ holds(Y) |Rest],Mid_begin,Mid_end,Premises_begin,

Premises_end,Check_trigger) :-

!,

% Find the Formula corresponding to Y.

% If it can’t be found in Mid_begin throw an error

Z = math_id(Y,Formula_PRS),

member(Z,Mid_begin),

% If FAIL THROW ERROR !!!

% Get rid of the math(..) part.

Formula_PRS = math(Formula_FOL),

(((Formula_FOL = type~quantifier),!);

((Formula_FOL = type~relation),!);

((Formula_FOL = type~logical_symbol),!)),!,

% If Check_trigger = check use Prover to check whether Formula follows from the premises

% If it can’t be proven throw an error.

% If Check_trigger = nocheck do nothing.

( Check_trigger = nocheck -> true

; fof_check(Premises_begin,[Formula_FOL],Id)
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),

% If FAIL, THROW ERROR!!!

% Update premises

append(Premises_begin,[Formula_FOL],New_Premises_begin),

!,

check_conditions(Id,Rest,Mid_begin,Mid_end,New_Premises_begin,Premises_end,Check_trigger).

% ------------------------- Definition ----------------------------------------

% X = A := B

% A and B both can be either a PRS or a negated PRS.

% A Definition is just one more premise. Therefore we update the premises and proceed.

check_conditions(Id,[ X |Rest],Mid_begin,Mid_end,Premises_begin,

Premises_end,Check_trigger) :-

X = (A:=B),

!,

% Extract the list of Premises from A and B

( is_prs(A) ->

check_prs(A,Mid_begin,A_Mid_end,Premises_begin,A_Premises_end,nocheck);

check_neg_prs(A,Mid_begin,A_Mid_end,Premises_begin,A_Premises_end,nocheck)

),

append(Premises_begin,List_A,A_Premises_end),!,

( is_prs(B) ->

check_prs(B,A_Mid_end,_,A_Premises_end,B_Premises_end,nocheck);

check_neg_prs(B,A_Mid_end,_,A_Premises_end,B_Premises_end,nocheck)

),

append(A_Premises_end,List_B,B_Premises_end),!,

% Update the premises

update_definitions(Premises_begin,New_Premises_begin,List_A,List_B),

!,

check_conditions(Id,Rest,Mid_begin,Mid_end,New_Premises_begin,Premises_end,Check_trigger).

% ------------------------- Assumption ----------------------------------------

% X = A => B

% A and B both can be either a PRS or a negated PRS.

% This results in a premises update:

% For all premises X from B we add

% ! [Free variables in A] : Fol_A -> X

% to the list of premises available

check_conditions(Id,[ X |Rest],Mid_begin,Mid_end,Premises_begin,

Premises_end,Check_trigger) :-

X = (A=>B),

!,

% Check A. The values of Mid_tmp and Premises_tmp will be given to

% B as _begin values.

% We use nocheck as these are Assumptions and need not be checked.

( is_prs(A) ->

check_prs(A,Mid_begin,Mid_tmp,Premises_begin,A_Premises_end,nocheck);

check_neg_prs(A,Mid_begin,Mid_tmp,Premises_begin,A_Premises_end,nocheck)

),!,

% Extract the list of premises from A

append(Premises_begin,List_A,A_Premises_end),

% Check B with all the Premises and Mid from A included

% The Mid_begin values are Mid_tmp and the Premises_begin values are Premises_tmpa,

% both of which we got from check_prs(A,..)

% The Mid_end value is not important ( ?? )

% The Premises_end value will later be used for all-quantification.

%

% If Check_trigger = nocheck then don’t check B, else do check it

( is_prs(B) ->
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( Check_trigger = nocheck ->

check_prs(B,Mid_tmp,_,A_Premises_end,B_Premises_end,nocheck);

check_prs(B,Mid_tmp,_,A_Premises_end,B_Premises_end,check)

);

( Check_trigger = nocheck ->

check_neg_prs(B,Mid_tmp,_,A_Premises_end,B_Premises_end,nocheck);

check_neg_prs(B,Mid_tmp,_,A_Premises_end,B_Premises_end,check)

)

),

!,

% Two cases:

% A : We deal with a normal assumption

% B : The user made a proof by contradiction

% The last entry in B_Premises_end determines that

( append(_,[type~relation..arity~0..name~’$false’],B_Premises_end) ->

(

% Contradiction case

% Negate Assumption and proceed

negate_formulas(List_A,Negated_A),

append(Premises_begin,Negated_A,New_Premises_begin)

)

;

(

% For all Formulas X in Premises_tmpb / Premises_tmp_a add

% a new over all free variables in A quantified Statement of the form

% ! [Free variables in A] : Fol_A -> X

% to our Premises storage

append(A_Premises_end,Premises_B,B_Premises_end),

update_assumption(Premises_begin,New_Premises_begin,List_A,Premises_B)

)

),

% Reset the Mid values to before the Assumption

% The Premises_begin becomes the New_Premises_begin which we got

% from the last predicate.

!,

check_conditions(Id,Rest,Mid_tmp,Mid_end,New_Premises_begin,Premises_end,Check_trigger).

% ------------------------- Negation ----------------------------------------

% X = neg(PRS)

% Takes all premises from PRS and negates them.

% Check occurs after the negation.

check_conditions(Id,[neg(PRS) | Rest ],Mid_begin,Mid_end,Premises_begin,

Premises_end,Check_trigger) :-

!,

% Get the Premises and Mids of PRS

% Check_trigger is nocheck as we want to prove the negates formulas!

check_prs(PRS,Mid_begin,New_Mid_begin,Premises_begin,Tmp_Premises_end,nocheck),

% Get the new premises and negate them

append(Premises_begin,Premises_PRS,Tmp_Premises_end),

negate_formulas(Premises_PRS,Negated_Premises_PRS),

% Check the Premises if Check_trigger = check

% otherwise just append them

( Check_trigger = check ->

fof_check(Premises_begin,Negated_Premises_PRS,Id);

true

),

append(Premises_begin,Negated_Premises_PRS,New_Premises_begin),

% Check the rest of the conditions with New_Mid_begin and New_Premises_begin

check_conditions(Id,Rest,New_Mid_begin,Mid_end,New_Premises_begin,Premises_end,

Check_trigger).

% ------------------------- Implication & for all/exists --------------------------------

% X = A ==> B

% A and B both can be either a PRS or a negated PRS.



71

% Find the Formulas in PRS_A and adds them as Premises. Then proceeds to check PRS_B

% with the updated premises

check_conditions(Id,[ X | Rest ],Mid_begin,Mid_end,Premises_begin,

Premises_end,Check_trigger) :-

X = (A==>B),

!,

% Get the Premises and Mids from A

% We don’t check as these are Assumptions!

( is_prs(A) ->

check_prs(A,Mid_begin,A_Mid_begin,Premises_begin,A_Premises_end,nocheck);

check_neg_prs(A,Mid_begin,A_Mid_begin,Premises_begin,A_Premises_end,nocheck)

),!,

% Check B with the updated Premises

% The Math IDs of A and B will not matter for the Rest of the proof.

( is_prs(B) ->

check_prs(B,A_Mid_begin,_,A_Premises_end,B_Premises_end,Check_trigger);

check_neg_prs(B,A_Mid_begin,_,A_Premises_end,B_Premises_end,Check_trigger)

),!,

% Get the Formulas in A and B

append(Premises_begin,List_A,A_Premises_end),

append(A_Premises_end,List_B,B_Premises_end),

% Update the original premises:

% For each formula F in B add

% ! [Free A] : A => F

% to the premises.

( List_A = [] ->

(

% A comes from a for all statement in natural language

% We quantify over each Mref of A

A = mrefs~Mrefs_A..id~Id_A,

(atom_concat(’prefix_forall’,_,Id_A) ->

update_for_all(Premises_begin,New_Premises_begin,Mrefs_A,List_B);

update_there_exists(Premises_begin,New_Premises_begin,Mrefs_A,List_B)

)

) ;

% A comes from a normal Implication

update_implication(Premises_begin,New_Premises_begin,List_A,List_B)

),

% Check the rest of the conditions with Mid_begin and New_Premises_begin

check_conditions(Id,Rest,Mid_begin,Mid_end,New_Premises_begin,Premises_end,Check_trigger).

% -------------------------- contradiction ------------------------------------------

check_conditions(Id,[contradiction|Rest],Mid_begin,Mid_end,Premises_begin,

Premises_end,Check_trigger) :-

!,

% Check whether we can conclude $false from the premises so far.

( Check_trigger = check ->

fof_check(Premises_begin,[type~relation..arity~0..name~’$false’],Id);

true

),

% Add [contradiction] to the premises

append(Premises_begin,[type~relation..arity~0..name~’$false’],New_Premises_begin),

% Check the rest of the conditions with New_Premises_begin

check_conditions(Id,Rest,Mid_begin,Mid_end,New_Premises_begin,Premises_end,Check_trigger).

% ------------------------- Everything else ----------------------------------------

% Every other case

%check_conditions([_|Rest],Mid_begin,Mid_end,Premises_begin,Premises_end) :-

% !,

% % throw error: ’Unknown condition’
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% check_conditions(Rest,Mid_begin,Mid_end,Premises_begin,Premises_end). % or fail?



Appendix B

The math lexicon

:- module(math_lexicon,[math_lexicon/2]).

/** <module> This module contains all mathematical items which math_grammar can parse

*

*

*/

%% math_lexicon(?Item:list(int),DOBSOD:gulp_list)

%

% math_lexicon lists all items and their properties which math_grammar can parse.

%

% ==

% math_lexicon("x",type~variable..arity~0..name~’x’).

% math_lexicon("f",type~function..arity~1..name~’f’).

% ==

%

% @param Item The Name of the item as a String.

% @param DOBSOD The DOBSOD representation of the Item.

%

% Variables

math_lexicon("t",type~variable..arity~0..name~’t’).

math_lexicon("u",type~variable..arity~0..name~’u’).

math_lexicon("v",type~variable..arity~0..name~’v’).

math_lexicon("w",type~variable..arity~0..name~’w’).

math_lexicon("x",type~variable..arity~0..name~’x’).

math_lexicon("y",type~variable..arity~0..name~’y’).

math_lexicon("z",type~variable..arity~0..name~’z’).

% Constants

math_lexicon("\u2205",type~constant..arity~0..name~’emptyset’).

math_lexicon("c",type~constant..arity~0..name~’c’).

% Functions

math_lexicon("f",type~function..arity~1..name~’f’).

math_lexicon("f2",type~function..arity~1..name~’f2’).

math_lexicon("g",type~function..arity~2..name~’g’).

math_lexicon("h",type~function..arity~3..name~’h’).

% Relation

math_lexicon("contradiction",type~relation..arity~0..name~’$false’).

math_lexicon("Ord",type~relation..arity~1..name~’ord’).

math_lexicon("Trans",type~relation..arity~1..name~’trans’).

math_lexicon("R",type~relation..arity~2..name~’r’).
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math_lexicon("=",type~relation..arity~2..name~’=’).

math_lexicon("\u2260",type~relation..arity~2..name~’~=’).

math_lexicon("\u2208",type~relation..arity~2..name~’in’).

math_lexicon("\u2264",type~relation..arity~2..name~’leq’).

math_lexicon("\u2265",type~relation..arity~2..name~’geq’).

math_lexicon("\u003C",type~relation..arity~2..name~’less’).

math_lexicon("\u003E",type~relation..arity~2..name~’greater’).

% logical symbols

math_lexicon("\u00ac",type~logical_symbol..arity~1..name~’~’).

math_lexicon("\u2227",type~logical_symbol..arity~2..name~’&’).

math_lexicon("\u2228",type~logical_symbol..arity~2..name~’|’).

math_lexicon("\u2192",type~logical_symbol..arity~2..name~’=>’).

math_lexicon("\u2194",type~logical_symbol..arity~2..name~’<=>’).

% quantifiers

math_lexicon("\u2200",type~quantifier..arity~2..name~’!’).

math_lexicon("\u2203",type~quantifier..arity~2..name~’?’).
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The Naproche Language

<text> ::= [<open-assumption>]*,

[<definition>]*,

[<lemma> |

<theorem>]*;

<theorem> ::= "theorem.",

[<definition>]*,

[<assumption>]*,

[<ext-statement>]+,

"proof.",

[<assumption> |

<ext-statement> ]*,

[<ext-statement>]+,

"qed.";

<lemma> ::= "lemma.",

[<definition>]*,

[<assumption>]*,

[<ext-statement>]+,

"proof.",

[<assumption> |

<ext-statement> ]*,

[<ext-statement>]+,

"qed.";

<open-assumption> ::= <assumption>;

<closed-assumption> ::= <assumption>,

[<ext-statement> |

<lemma> ]*,

<assumption-close>;

<definition> ::= "define",

<sub-statement>,

["iff" | "if and only if"],

<sub-statement>.

<assumption> ::= [ "assume that" |

"assume for a contradiction that" |

"let" |

"consider" ],

<simple-statement>;

<assumption-close> ::= "thus",
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<simple-statement>;

<ext-statement> ::= [ <uni-quant> |

<ext-quant> |

<implication> |

<negation> |

<statement> |

<closed-assumption> ]+;

<simple-statement> ::= [ <uni-quant> |

<ext-quant> |

<implication> |

<negation>

<sub-statement>]+;

<uni-quant> ::= "for all",

<variable>,

","

[<simple-statement>]+;

<ext-quant> ::= "there is an",

<variable>,

"such that",

<simple-statement>;

<implication> ::= <sub-statement>,

"implies",

<sub-statement>;

<negation> ::= "not",

<sub-statement>;

<statement> ::= [ "then" |

"hence" |

"recall that" |

"but" |

"in particular" |

"observe that" |

"together we have" |

"so" ],

<sub-statement>;

<sub-statement> ::= A formula in the underlying first order language

<variable> ::= A variable of the underlying first order language
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List of Abbreviations

Abbreviation Description

ATP Automated Theorem Prover

DRS Discourse Representation Structure

DRT Discourse Representation Theory

PRS Proof Representation Structure

TPTP Thousands of Problems for Theorem Provers

Dref Discourse Referent

Mref Mathematical Referent

Rref Textual Referent
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