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C 

I

One should not aim at being possible to understand,

but at being impossible to misunderstand.
Quintilian, circa 100 

20th century developments in the foundations of mathematics have shown that virtually all of

present day mathematical proofs can be exhaustively expressed in a suitable formal system. However,

for reasons of readability and practicality, mathematicians oen produce their work. is renders

such work insusceptible to automatic verification and poses the requirement that its correctness be

checked by a trusted social mechanism of peer review.

1.1 Motivation

N (Natural language Proof Checking) is a research project started at the University of Bonn

by Prof. Dr. Bernhard Schröder (then Institute for Communication Research, IfK) and Prof. Dr.

Peter Koepke (Mathematical Instiute). It aims at providing a system within which mathematical texts

written in a controlled natural language can be automatically checked for integrity and correctness.

e project is intended as an aid to both authors, who wish to check their work before submitting it,

and to reviewers who wish to automatically check work submitted to them. e prototypical users of

the system are students of mathematics and related fields such as computer science and physics, who

need to turn in mathematical proofs as assignments, and teachers and teaching assistants who need

to check large numbers of such proofs.

From a user’s point of view, the system is simple. It can be integrated as a plug-in into the
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 (what-you-see-is-what-you-get) TEX editing platform (van derHoeven, 1998) and al-

lows the checking ofmathematical proofs at the press of a button. User interaction isminimal—invoking

the system on a mathematical text from within TEX produces either a “Proof accepted.” message

if the proof verification succeeded, or a diagnostic message hinting at the error which prevented a

successful check. Under the hood, however, the N system is complex and multi-layered.

e mathematical text undergoes a number of format transformations, gets tokenised and split into

sentences and finally a formal representation of it is constructed. is formal representation is in

turn passed on to an automatic proof checker for the actual verification1 . It is with these transfor-

mations in general and with the generation of the formal representation in particular that this work

is concerned.

1.2 Overview

e main subject of this work is the generation of formal representations of informal mathematical

proofs. In order to approach this task correctly, we shall first try to define the domain we are working

in by giving a brief overview of the history and practice of mathematical proofs and compare formal

and informal proofs fromboth amathematical and a linguistic point of view (chapter 2). We shall then

focus on informal proofs and describe their structure and medium of expression, or what is widely

referred to in literature as “the language of mathematics”. We shall argue that this “language of math-

ematics”, or, as we suggest it should be more appropriately called, “language of mathematical texts”,

can be viewed as a mixture of a particular ethnic natural language and a universal symbolic language.

We shall then introduce the “N language”—a controlled language for writing mathemat-

ics—and show how different language constructs map to specific s. We shall look at mechanisms

for the generation of formal discourse representations in general and focus on Discourse Representa-

tion eory () and the formal structures it uses called Discourse Representation Structures ()

(chapter 3). s were conceived with natural language discourse in mind and fall short on dealing

with some of the specific properties of mathematical texts (section 5.1). We shall therefore propose an

extension to the makeup and method of construction of s, yielding Proof Representation Struc-

tures (s)—the formal structures used within the N project (chapter 5). Finally, we will

review some related work (chapter ??) and touch on possible directions for the future development of
1Currently the N plug-in for TEX uses a home-grown checker written in Prolog by Prof. Dr. Peter Koepke.

It is, however, the intention of the project’s authors for the system to be able to interface with any available proof checker such

as Coq, Otter, HOL or Isabelle.
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the N project (chapter 7).
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C 

M 

e main subject of study of this work is the mathematical text as a means for the presentation of a

mathematical proof. It is therefore only appropriate that we begin our discussion by looking at what

proofs are.

2.1 What is a proof?

A proof in mathematics may refer to the process of discovering a justification for a certain mathe-

matical hypothesis or to the discourse produced as a result of the description of such a process. For

the purpose of this work we shall adopt the second meaning. Accordingly, by “mathematical text” we

shall mean the writtenmanifestation of this discourse. Spokenmathematical lectures and texts which

may be considered as being of a mathematical nature per se, such as philosophical, methodological

or historical overviews, will not be considered subject of this work.

Despite the central role which proofs play in the practise of mathematics, there seems to exist

no universally accepted method for constructing proofs or even a general consensus on what a proof

actually is. e answers to the second question do however, seem to converge around two distinct

claims. e first of those two claims, which we shall call the traditionalist view, is that proofs are

rhetorical devices which present a convincing argument that a mathematical statement is true. e

second claim, which we shall call the formalist view, is that proofs are chains of logical reasoning steps

carried out exclusively within a formal system which culminate at a certain mathematical statement

of which it is then said to have been proven. ose two approaches to proofs entail very different

definitions of “proof correctness” and accordingly different methods of proof verification. Both will
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be discussed in detail in section 2.3. To understand how it came to be that two different notions,

and indeed, standards of proof came to co-exist, we need to look at the evolution of mathematical

reasoning.

2.2 e evolution of mathematical proofs

e idea that mathematical statements require deductive justification comes from the ancient Greeks.

Pythagoras was the first to deductively prove the theorem bearing his name, although the statement

of the theorem had been known for at least 500 years. Aristotle devised the axiomatic method and

captured in writing the syllogisms—a number of inference rules which lie at the heart of deductive

reasoning. Using the axiomatic method, one is allowed to define objects only in terms of already

defined objects and derive new statements only from statements one has already shown to be true. To

avoid an unending chain of reasoning one needs an inventory of objects and statements which need

no such rigid justification—primitive objects and axioms. Euclid’s Elements was the first large body of

work in mathematics (and, arguably, all of science) which made use of the axiomatic method and the

application of deductive thinking. In the course of time mathematicians discovered numerous, albeit

non-fatal, flaws with Euclid’s reasoning1. A much more radical shortcoming, at least from the present

day’s point of view, is that Euclid argumented exclusively in a natural language which is inherently

wrought with ambiguity and susceptible to imprecision. It was only through the work of Galileo

and Leibniz some 1900 years later that mathematical language acquired its now common form of a

mixture of natural language and symbolic expressions. Despite these shortcomings the Elements set

a paradigm on how mathematics is to be written and was regarded as an example of rigorous proof

par excellence until well into the 19th century.

e 19th century saw the advent of the modern axiomatic method. e vital new characteristic

of this method when compared with Aristotle’s was that the statements a mathematician uses should

not only follow from statements which have previously been shown to be true, but that they should

do so in a purely logical manner, without the need for interpretation. Instrumental in this regards was

George Bolle’s Calculus of Logic (Boole, 1848) in which he described a formal system for logical and

set-theoretical reasoning. Boole’s calculus lacked quantifiers, however, andwas therefore only suitable

for propositional reasoning. Gottlob Frege’s introduction of quantifiers and the publication of his
1Both Gauss and Leibniz pointed out that Euclid made use of terms and properties of objects, such as the notion of be-

tweenness without justifying them. ose notions are intuitive, but a rigorous application of the axiomatic method requires

that they be justified nontheless. For more details see Morris Kline’sMathematics: e Loss of Certainty (Kline, 1982).
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Begriffsschri on formal logic (Frege, 1879)marked a cornerstone in the development ofmathematical

reasoning. Frege argued that a logical derivation of the mathematical axioms was possible and that

in order to do so, one needs to work exhaustively within a formal system. A natural consequence of

this claim was the requirement for a formal language on which to build-up the formal system. Frege

insisted that ordinary every day language is not suited to this purpose:

. . . [es kommt] aber nicht darauf an, daßman sich von derWahrheit des Schlußsatzes überzeuge,

womit man sich in der Mathematik meistens begnügt; sondern man muß sich auch zum Be-

wußtsein bringen, wodurch diese Überzeugung gerechtfertigt ist, auf welchen Urgesetzen sie

beruht. Dazu sind feste Geleise erforderlich, in denen sich das Schließen bewegen muß, und

solche sind in den Wortsprachen nicht ausgebildet.2

e strive for reduction of mathematical foundations to pure logic went to extremes at the be-

ginning of the 20th century. Mathematics was approached on a completely abstract level, devoid

from any recourse to meaning. To quote A. N. Whitehead: “Mathematics is thought moving in the

sphere of complete abstraction from any particular instance of what it is talking about” (Whitehead,

1925). BertrandRussel introduced theeory of Types in 1903 and pursued his own type-based logic.

Together with Whitehead, Russel worked on the establishment of a formal foundation of mathemat-

ics, which culminated in the monumental Principia Mathematica (Whitehead & Russell, 1910, 1912,

1913). In Principia, Russel and Whitehead provided many formal derivations of important theo-

rems in set theory and arithmetic and so demonstrated that vital parts of working mathematics can

be specified completely in a formal logic. Moreover, by employing a much clearer notation than the

two-dimensional system of lines of Frege’sBegriffsschri, Principiamade evident the expressive power

of modern predicate logic. Unfortunately, manymathematicians found Russel andWhitehead’s treat-

ment of mathematical logic le a lot to be desired in a number of crucial aspects. E.g., Gödel pointed

out that:

[. . . ] this first comprehensive and thorough going presentation of a mathematical logic and the

derivation of mathematics from it is so greatly lacking in formal precision in the foundations

(contained in *1-*21 of Principia), that it presents in this respect a considerable step backwards

as compared with Frege. What is missing, above all, is a precise statement of the syntax of the

formalism.3

2Gottlob Frege, Kleine Schrien (Frege, 2006), cited aer (Zinn, 2004b).
3Kurt Gödel, Russel’s mathematical logic (Gödel, 1944), cited aer (Harrison, 1996).
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e Principia also a demonstration that, while logical formalisation was possible, it was certainly

impractical:

Within the mathematical community, the view of mathematics as logical and formal was elab-

orated by Bertrand Russell [. . . ] in the first years of this century. [He] saw mathematics as

proceeding in principle from axioms or hypotheses to theorems by steps, each step easily justi-

fiable from its predecessors by a strict rule of transformation, the rules of transformation being

few and fixed. e Principia Mathematica was the crowning achievement of the formalists.

It was also the deathblow for the formalist view. ere is no contradiction here: Russell did

succeed in showing that ordinary working proofs can be reduced to formal, symbolic deduc-

tions. But he failed, in three enormous, taxing volumes, to get beyond the elementary facts of

arithmetic.4

Both Frege and Russel devised their formal systems in a bottom-up manner—starting with ax-

ioms and building new statements only according to the rules of logic, thus seemingly guaranteeing

that the systems were consistent. In the 1920s David Hilbert rejected this logicist approach to general

axiomatisation and worked on what was later to become known as the Hilbert program—a strive to

formalise existing mathematical theories to a finite set of axioms and then prove that the resulting

system is consistent using only finitary methods. Finitary methods are intuitive operations on fini-

tary objects—“extralogical concrete objects that are intuitively present as immediate experience prior

to all thought”. By recursively finding proofs for simpler and simpler systems, all mathematics could

be reduced to a non-primitive number theory, such as Peano Arithmetic.

We have thus reduced Peano's three primitive ideas to ideas of logic: we have given definitions

of them which make them definite, no longer capable of an infinity of different meanings, as

they were when they were only determinate to the extent of obeying Peano's five axioms.

[. . . ]

Assuming the number of individuals in the universe is not finite, we have now succeded not

only in defining Peano's three primitive ideas, but in seeing how to proce his five primitive

propositions, by means of primitive ideas and propositions belonging to logic. It follows that

all pure mathematics, in so far as it is deducible from the theory of natural numbers, is only

a prolongation of logic. e extension of this result to those modern branches of mathematics

which are not deducible from the theory of natural numbers offers no difficulty of principle. . .5

4 (Millo et al., 1979)
5Bertrand Russel, Introduction to Mathematical Philosophy (Russell, 1919)
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e central question was, therefore, whether the system one uses in each recursion step is itself

consistent.

Kurt Gödel’s work on Incompleteness seemed like a lethal blow to the formalist doctrine. Gödel’s

First and Second Incompleteness eorems proved that the effort to formalise all of mathematics is

inevitably bound to fail. Gödel showed that every formal system which is complex enough to in-

clude arithmetic, finitely specified and consistent is also incomplete, i.e. there will always exist true

statements which can be expressed in the language of the formal system, but cannot be proven to be

true by using the reasoning rules of the system. It has, however, been established that it is possible

to express all working mathematics in a formal system, e.g. in Zermelo-Fraenkel set theory plus the

Axiom of Choice () combined with first-order logic (van Heijenoort, 1967).

is is undoubtedly part of the reason why Hilbert’s program and the standard it set for mathe-

matical rigour influenced many 20th century mathematicians. It certainly inspired Nicolas Bourbaki6

to also pursue mathematics “from the beginning, [by giving] complete proofs”. Bourbaki set out to

write books on the foundations of mathematics, covering only material that “any mathematics gradu-

ate student should know” andwhich was not “active area of current research inmathematics” (Krantz,

2007). Bourbakiworked in a fixed formal systemof axiomatic set theory ofwhich he stated “[on] these

foundations, [. . . ] I can build up the whole of mathematics”7 seemingly ignoring Gödel’s findings:

[. . . ] Bourbaki had grasped the positive worth of the work of Hilbert and his school, and wel-

comed the idea of the reduction of the question of correctness of mathematics to a set of rules,

but nevertheless persisted, even aer Gödel's work showed that Hilbert's program could never

be completed, in thinking of logic and set theory as stu one settled in Volume One and then

forgot about.

[. . . ]

He regards the foundational crisis of the beginning of the century as having been resolved by

Hilbert's formalist doctrine that the correctness of a piece of mathematics is a question of its

following certain rules, and not a question of its interpretation.8

Despite the fact the he provided a description of the formal the system he was working in, Bour-

baki did not limit himself to the language of that system for the recording of presented proofs for

“reasons of readability and practicality”:
6Nicolas Bourbaki was the nom de plume of a group of French mathematicians which formed in the 1930s at the École

Normale Supérieure.
7Nicolas Bourbaki, eeory of Sets (Bourbaki, 1968), cited aer (Harrison, 1996).
8A.R.D. Mathias, e Ignorance of Bourbaki (Mathias, 1992)
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If formalizedmathematics were as simple as the game of chess, then once our chosen formalized

language had been described there would remain only the task of writing out our proofs in this

language, [. . . ] But the matter is far from being as simple as that, and no great experience

is necessary to perceive that such a project is absolutely unrealizable: the tiniest proof at the

beginning of theeory of Sets would already require several hundreds of signs for its complete

formalization. [. . . ] formalized mathematics cannot in practice be written down in full, [. . . ]

We shall therefore very quickly abandon formalized mathematics.9

Bourbaki proofs cannot be checked on purely syntactic grounds (which would have been the

case had he adhered to the formal language he described in such copious detail). e final arbiter of

proof validity is, therefore, not mechanical verification, but rather the fact that each proof could in

theory be expressed in this formal language.

2.3 Formal and informal proof

We chose to end the brief overview of the history of mathematical reasoning with Nicolas Bourbaki’s

views as they are rather symptomatic of the general attitude towards mathematical work within a

formal system. Indeed, the fact that proofs can be reduced to formal symbolic deduction seems to

have had little influence on the way “ordinary mathematics” is practised today.

At the beginning of this chapter we hinted at the two different notions of proof: proof as a chain

of logical inferences and proof as a sufficiently convincing argument. It is now time to give those two

notions names—formal and informal proof, offer precise definitions and focus on the implications

each of the two approaches have on the methods of proof verification.

2.3.1 Formal proof

Consider the following definition of proof in (Mendelson, 1997):

A formal theoryL is defined when the following conditions are satisfied:

1. A countable set of symbols is given as the symbols ofL. A finite sequence of symbols

ofL is called an expression ofL.

9Nicolas Bourbaki, eeory of Sets (Bourbaki, 1968), cited aer (Harrison, 1996).
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2. ere is a subset of expressions ofL called the set of well-formed formulas (wfs) ofL.

ere is usually an effective procedure to determine whether a given expression is a

wf.

3. ere is a set of wfs called the set of axioms ofL. Most oen one can effectively decide

whether a given wf is an axiom; in such as caseL is called an axiomatic theory.

4. ere is a finite setR1, . . . , Rn of relations among wfs, called rules of inference. For

eachRi there is a unique positive integer J such that, for every set of j wfs and each

wfB, one can effectively decide whether the given j wfs are in the relationRi toB,

and, if so, B is said to follow from or to be a direct consequence of the given wfs by

virtue ofRi.

A proof in L is a sequenceB1, . . . , Bk of wfs such that, for each i, eitherBi is an axiom

of L orBi is a direct consequence of some preceding wfs in the sequence by virtue of one

of the rules of inference ofL.

A theorem ofL is a wfB ofL such thatB is the last wf of some proof inL. Such a proof is

called a proof of B inL. A wfA is said to be the consequence inL of a set ofΓ of wfs if and

only if there is a sequenceBi, . . . , Bk of wfs such that Φ isBk and, for each i, eitherBi

is an axiom orBi is in Γ, orBi is a direct consequence by some rule of inference of some

of the preceding wfs in the sequence. Such a sequence is called a proof (or deduction) of Φ

form Γ. e members of Γ are called hypotheses or premises of the proof.10

Across Mendelson’s definition we find the properties of proofs of we already encountered in the

brief historical digression. To summarise: a proof is formal if is carried out exclusively within a formal

system (called formal theory in (Mendelson, 1997)). is constitutes two properties of proofs vital to

our discussion:

— Proofs are expressed in a formal language. e use of the term formal language is perhaps misleading

considering the traditional dichotomy of “formal” and “natural” languages. e language of a formal

system may well include words and syntactic constructions from natural languages, as long as the fol-

lowing conditions are met: a) the natural language words are included in the alphabet/lexicon of the

formal language; b) the algorithms for recognition of well-formed formulas in the formal language

are able to recognise the syntactic rules “borrowed” from the natural language; and c) the words and

syntactic constructions coming from the natural language are unambiguous. ere is nothing special

10Elliott Mendelson, Introduction to Mathematical Logic (Mendelson, 1997), cited aer (Zinn, 2004b).
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about the “symbols” and syntactic rules of a formal language that would prevent natural language

words and phrases from becoming part of the formal language, as long as the semantics of the formal

language remains well-defined. Indeed, this is just the approach we take with the N lan-

guage—it includes a mixture of symbolic and natural language, yet the lexicon and grammar of the

natural language are controlled and unambiguous. More details will be presented in the dedicated

chapter 4.

— Proofs are expressed exhaustively. is means that every single expression of the proof sequence is a

well-formed formula and is there as a consequence of the application of one of the system’s inference

rules, i.e. no reasoning steps have been le and no additional “noise” is present. By noise we mean

expressions which are not part of the reasoning process (such as hints and emphasis common with

informal proofs). is means that one can manipulate formal proofs on purely syntactic grounds,

without recourse to meaning or the need for interpretation. For the implications of this fact on the

mechanism of proof verification, consider the following treatment by (Jones, 2007):

e purpose of proof is to provide a standard of demonstration which is independent of intu-

ition, at least insofar as the validation of proofs is concerned. ough intuitionmay be essential

in the discovery of a proof, once discovered, it should be possible to verify the correctness of a

proof in a completely mechanical way.

What ismeant here by amechanical verification is that given the rules and axioms of the logical

system in which the proof is conducted, and the definitions upon which the proof depends, the

checking of the correctness of the proof is simply a matter of syntactic manipulations which can

be checked in principle without any understanding of the subject matter of the proof.

It is the utter explicitness of formal proofs which enables their verification on purely syntactic

grounds. Unfortunately the very same explicitness makes formal proofs extremely taxing for human

readers. is was equally true at the beginning of the 20th century for Russel and his own work11

and for the formal proofs created for automated proofs checkers and those produced by automated

theorem provers.

e features we highlighted above—the language, the factor of readability, and the verification

mechanism—are of special interest to us, considering the goal of the N system to allow

authors to write human readable proofs and verify them. We shall summarise them in a table (2.1),

which will be updated with the information on informal and N proofs in the next sections.
11“[Principia Mathematica] demands extremely close attention from the reader, and there can be few who made the effort.

Indeed, (Russell, 1968) remarks that his own intellect ‘never quite recovered from the strain of writing it.’” (Harrison, 1996)
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Formal

language symbolic, formally defined

readability hardly/not readable

verification mechanical, on syntactic
grounds, interpretation not
required

Table 2.1: Language, readability and verification mechanism for formal proofs.

2.3.2 Informal proof

Despite the existence of numerous guides on writing mathematics, e.g. (Steenrod et al., 1973) and

(Krantz, 1997), there is no definitive processing model for informal proof texts. is lies in part

in the lack of definition of the language of informal proofs (see (Trybulec & Święczkowska, 1991),

(Wolska & Kruijff-Korbayová, 2004a) and (Wolska & Kruijff-Korbayová, 2004b)). is necessitates

the existence of a social mechanism for verification. Consider (Millo et al., 1979):

In mathematics, the aim is to increase one’s confidence in the correctness of a theorem, and it’s

true that one of the devices mathematicians could in theory use to achieve this goal is a long

chain of formal logic. But in fact they don’t. What they use is a proof, a very different animal.

[. . . ] First of all, the proof of a theorem is a message. [. . . ] We believe that, in the end, it is a

social process that determines whether mathematicians feel confident about a theorem [. . . ] .

Contrast the definition of proof by Mendelson we presented in the previous section with that of

Krantz (Krantz, 2007): “Heuristically, a proof is a rhetorical device for convincing someone else that

a mathematical statement is true or valid”. “Convincing” implies that proofs have an intended audi-

ence which is not only a recipient, but also, by some process of critical thinking, responsible for the

“social” verification of the proof.

William urston elaborates on this “social process” in (urston, 1994):

However, we should recognize that the humanly understandable and humanly checkable proofs

that we actually do are what is most important to us, and that they are quite different from

formal proofs. For the present, formal proofs are out of reach and mostly irrelevant: we have

good human processes for checking mathematical validity.

[. . . ]
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Mathematicians can and do fill in gaps, correct errors, and supply more detail and more care-

ful scholarship when they are called on or motivated to do so. Our system is quite good at

producing reliable theorems that can be solidly backed up. It’s just that the reliability does

not primarily come from mathematicians formally checking formal arguments; it comes from

mathematicians thinking carefully and critically about mathematical ideas.

emain criterion in proof verification becomes the “social acceptability” of the proof rather that

the adherence to a formal system and accuracy with respect to that system’s language and rules. is

means that mathematicians can rely on the fact that their peers posses certain background knowledge

and familiarity with the operational methods of the particular field of mathematics. ey can forego

explicit logical reasoning in parts of the proof, omitting certain steps, and rely on the fact that the

audience will be able to, by intuition or experience, “fill in the gaps”.

e rather vague notion of social acceptability is described in (Hanna, 1983):

1. ey understand the theorem, the concepts embodied in it, its logical antecedents, and

its implications. ere is nothing to suggest it is not true;

2. e theorem is significant enough to have implications in one ormore significant branches

of mathematics (and is thus important and useful enough to warrant detailed study and

analysis);

3. e theorem is consistent with the body of accepted mathematical results;

4. e author has an unimpeachable reputation as an expert in the subject matter of the

theorem.

5. ere is a convincing mathematical argument for it (rigorous or otherwise), of a type

they have encountered before.

If there is a rank order of criteria for admissibility, then these five criteria all rank higher than

rigorous proof.

[. . . ]

[e] mathematician is much more interested in the message embodied in the proof than its

formal codification and syntax. e mechanics of proof are seen as a necessary but ultimately

less significant aspect of mathematics. Certainly being able to follow the steps of a proof is not

the same as understanding it.12

Adding informal proofs to the matrix of proof properties yields table 2.2:

12G.Hanna, Rigorous proof in mathematics education (Hanna, 1983), cited aer (Zinn, 2004b)
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Formal Informal

language symbolic, formally defined mixture of natural and
symbolic, not formally
defined

readability hardly/not readable readable

verification mechanical, on syntactic
grounds, interpretation
not required

social, interpretation
required; mechanical
verification not possible

Table 2.2: Language, readability and verification mechanism for formal and informal proofs.

2.4 Requirements for N proofs

Having seen how formal and informal proofs compare with regard to their language, readability and

verification, we shall now place N proofs in the comparison matrix.

e mathematical proofs which the N system accepts display a fusion of both formal

and informal characteristics. e language they are written in is, just like that of informal proofs, a

mix of natural and symbolic language which makes them readable by humans and thus suitable for

a “social” process of verification. Yet the language is controlled, having a fixed lexicon and grammar,

and unambiguous, which means that the proofs are also machine verifiable.

e N system also provides a mechanism which allows authors to write hints and ex-

planations (say, to provide a proof outline) such as are typical of informal proofs. ese “comments”

of a sort are only helpful to human readers, yet they are not part of the proof proper and are silently

discarded when the proof is submitted for automated verification.

Table 2.3 shows the updated comparison matrix of proofs types.
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Formal Informal N

language symbolic, formally defined mixture of natural and
symbolic, not formally
defined

mixture of natural and
symbolic, formally defined

readability hardly/not readable readable readable

verification mechanical, on syntactic
grounds, interpretation
not required

social, interpretation
required; mechanical
verification not possible

mechanical and social
possible

Table 2.3: Language, readability and verification mechanism for formal, informal, and N
proofs.
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C 

D R T

Discourse understanding has been one of the main directions of research in computational linguis-

tics and numerous theories have sprouted as a result of this research—File Card Semantics (Heim,

1982), Dynamic Predicate Logic (Groenendijk & Stokhof, 1991), Update Semantics (Veltman, 1996)

and (Groenendijk et al., 1996) and Discourse Representation eory (Kamp, 1981) among others. As

we are concerned with mathematical discourse, it is only natural to look at those theories as a useful

starting point.

We chose Discourse Representationeory () as it is one of the oldest and certainly themost

prominently established theories of discourse understanding. It has seen numerous implementations

and has, since its inception, been adapted to explain a number of different natural language phenom-

ena such as anaphora and quantification (Black, 1993).

provides a basic data structure—theDiscourseRepresentation Structure ()—which servers

a two-fold purpose: it is used to represent content and to provide context.

3.1 Discourse Representation Structures

3.1.1 Formal definition of s

For the following definition, let x1, . . . , xn be discourse referents, let γ1, . . . , γm be conditions, let

R be a relation symbol of arity n, and letB andB1 be s.

Definition 1: Discourse Representation Structures.
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1.

x1, . . . , xn

γ1
...

γo

is a .

2. R(x1, . . . , xn) is a condition.

3. x1 = x2 is a condition.

4. ¬B is a condition.

5. B ∨B1 is a condition.

6. B → B1 is a condition.

7. Nothing else is a  or a condition.

3.2 Accessibility

e notion of accessibility states which discourse referents are available for resolution. e accessi-

bility of discourse referents is defined in terms ot the accessible relation between s. A discourse

referent x is accessible from a sub- B if and only if x is introduced in some  B´ and B is

accessible fromB´. e accessibility between s is defined as follows:

Definition 2: A Bi is accessible from a Bj if and only if

1. Bi equalsBj; or

2. Bi subordinatesBj.

Definition 3: A Bi subordinates a Bj if and only if

1. Bi immediately subordinatesBj; or

2. there is some B such thatBi subordinatesB andB subordinatesBj.
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Definition 4: For the sBi andBj,Bi immediately subordinatesBj if and only if

1. Bi contains a condition of the form¬Bj; or

2. Bi contains a condition of the formBj ∨B orB ∨Bj for some B; or

3. Bi contains a condition of the formBj → B for some B; or

4. B contains a conditionBi → Bj for some B.

3.3  construction

 construction is an iterative, incremental process. In the original version of  processing the

discourse s1, s2, . . . , sn where s1, s2, . . . , sn is the list of sentences in the discourse proceeds as

follows: the parse tree of s1 is transformed according to  construction rules into a K1 which

serves as the context of s2. e algorithm halts when the end on the list of sentences is reached. is

basic principle has remained, yet there have been numerous reformulations to address composition-

ality (Bos et al., 1994), the notion of sentences as transformation of information states (Johnson &

Klein, 1986), etc. For a thorough overview of the implications of the different approaches see (Black,

1993).
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C 

T N 

e N language is the language in which N proofs are written in. It is a controlled

language with well-defined semantics and represents a mixture of selected English natural language

expressions extracted from commonmathematical practise and a symbolic language which allows the

use of simple mathematical expressions. We shall confine the discussion in this chapter to the syntax

of the N language and define its semantics in terms of the structures it is used to represent

(chapter 5).

e N language is currently a template language, i.e. it is defined as a set of templates

in which we use so called trigger phrases to infer the type of sentence. e basic building block is the

sub-statement. What this means will become clear in the listing of the templates below. For them we

shall use a pseudo- notation. e expressions in brackets are fixed parts of the templates.

e N language supports five types of sentences—structure markers, statements, defi-

nitions, assumptions and assumption closing sentences.

4.1 Structure markers

Structure markers are not part of the proof proper, i.e. they play no role in the reasoning recorded

within the proof. Rather, they are used to denote the structure of the proof. e structure markers

currently supported by the N system are “eorem.”, “Lemma.”, “Proof.” and “Qed.”
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4.2 Statements

Statements have the general form of

statement --> (statement trigger), sub-statement.

Currently supported statement triggers are: then, hence, recall that, but, in particular, observe that,

together we have and so.

4.3 Definitions

Definitions have the general form of

define --> (define), sub-statement, if and only if, sub-statement.

or

define --> (define), sub-statement, iff, sub-statement.

4.4 Assumptions

Assumptions have the general form of

assumption --> (assumption trigger), sub-statement.

Currently supported statement triggers are: let, consider, assume that and assume for a contradiction

that.

4.5 Assumption closing sentences

Assumption closing statements have the general form of

closing -> (closing trigger), sub-statement.

Currently, the only supported closing trigger is thus.

4.6 Other expression types

e N language also supports the expression of natural language quantification and impli-

cation. ose are defined as follows.

Natural language quantification:

(for all), sub-statement, ',', sub-statement.
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Implication:

sub-statement, (implies), sub-statement.
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C 

P R S

Having provided the linguistic description of the N system, it is time to focus on its pro-

cessing model. In this chapter we shall describe the structure we devised to support the formalisation

of N texts—the Proof Representation Structure ()1. Following a brief summary of the

requirements we set out to fulfil by developing the  specification (section 5.1), we shall give a

bird’s eye overview of the role s play within the N project (section 5.2) and give their for-

mal definition (section 5.4). We shall then focus on the all-important accessibility relation (section

5.6) and describe how specific expressions in the N language map to different  instances

(chapter 6).

5.1 Limitations of  with regard to proof texts

So far we have established that in order to pass an informal mathematical text to a proof verification

system, we need to convert it to some kind of formal structure first. We claim that semantic theories

designed for accomplishing this task for natural language narrative text provide a good basis, yet fail

to capture crucial properties specific to mathematical texts. So the question becomes “can we extend

natural language semantic theories to support the analysis of said properties?”. We claim that the

answer to this question is yes. And since we deemed  particularly fit for our purposes (chapter 3),
1e name Proof Representation Structure coincides with the name of a similar structure described by Claus Zinn in his

doctoral thesis (Zinn, 2004b). In addition to their names, both structures share the same motivation (“How do we represent

informal mathematical discourse in a formal manner?”) and the same background (both are extensions of Discourse Repre-

sentation Structures). Despite this similarities the N s and Zinn’s s are different in both their composition and

their construction mechanism. Zinn’s work will be further described in chapter ??.
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we will look at extending its underlying formal structure—the —in both composition, semantics

and methods of construction.

Before we describe the extensions we propose, let’s recap the requirements for the N

formal structure. e following list of requirements is both general, in the sense that any  system

for mathematical text should fulfil them, as well as N-specific, driven by the motivation

behind the project itself—to provide a useful teaching aid for students of mathematics and related

disciplines.

Text and proof structure Mathematical proofs are highly structured, unlike narrative text. Proofs are

commonly divided into discrete theorems, which are themselves composed of a goal (the proposition

we want to prove) and a body (the steps of the proof itself ). Proof building blocks may also be nested,

usually by including one or more auxiliary proofs (lemmas) inside a theorem. On an even lower level,

specific linguistic expressions—such as assumption-conclusion pairs and case differentiations—lead

to similar natural bracketing.

Nesting and bracketing in this manner are crucial for the comprehension of proofs by readers, as well

as their verification by automated proof checkers. It is therefore necessary to preserve such structures

when formalising a proof.

Sequentiality e order in which the sentences of which a proof consists of are interpreted should

be mirrored in the final formal representation. Proof verification systems rely on this order to check

whether each consecutive proposition follows logically from the preceding ones. ’s goal of pro-

cessing the whole discourse to a sort of a “net” meaning representation by merging sub-structures

whenever possible results in a loss of individual sentences, and thus of their order, and must there-

fore be abandoned.

Reuse of variable names e natural nesting and bracketing outlined at the beginning of this list,

and the strive to minimise the number of variable names used within a proof (in order to increase

readability and clarity), means that variables are possibly bound by different existential conditions at

any point of the proof. Basic examples of this are variable definitions, which are usually not shared

between the different theorems in a proof, and variables for which a case differentiation is performed

(say, considering three possibilities for a number—it can be positive, negative or equal to 0).

is calls for a highly dynamic reading of variable conditions which allows us to add binding con-

ditions when assumptions about a variable are made, as well as to retract those conditions when the

assumption loses scope.
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Definitions* Definitions provide a mechanism for proofs to dynamically modify the very language

they are written in. ey introduce new language constructs which must be added to the language

processing modules on-the-fly.

Intertextual and intratextual references* Proofs commonlymake use of other, already proven, propo-

sitions. A reference by number or name (if one is available and commonly agreed upon) is usually

inserted to show this relationship. A formal structure suitable for representing proofs should, there-

fore, account for a way of uniquely identifying proofs, as well as a way for resolving references made

to them.

Localisation We should be able to easily identify the exact location of the original proof text which

is responsible for the creation of each individual sub-structure in our formal representation. is

is mainly necessary for the generation of meaningful error messages, no matter whether they are

visual (e.g. the highlighting of an erroneous sentence) or textual. Error reporting is desirable for

both linguistic errors, which are usually caught during the initial parsing, and logical errors which

are identified by the proof checking system.

5.2 Overview

To address the requirements outlined in the previous sectionwe propose a new formal structure called

Proof Representation Structure. It inherits its basic form from the Discourse Representation Structure

and extends it with new slots and a novel construction mechanism.

A  is a heterogeneous quintuple (i,D,M,C,R) where

— i is a unique id;

— D is a set of discourse referents;

— M is a set of mathematical referents;

— C is a set of conditions;

— andR is a set of references to parts of the same text or other texts.

* Provisions for this feature have been made in the definition of the formal structure and its associated construction

mechanisms. However, it is not fully implemented in current the codebase.
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i

d1, . . . , dn m1, . . . ,mk

c1
...
cl

→ r1, . . . , rp

Figure 5.1: e basic form of a . i is the id, d1, . . . , dn are discourse referents,m1, . . . ,mk are
mathematical referents, c1, . . . , cl are conditions and r1, . . . , rp are textual references.

We will oen use a graphical representation of such tuples as a box-like structure, like the one in

fig. 5.1. When the set of references is empty, which is the case for most formalised sentences, we will

leave out the bottom-most field in order to save space (fig 5.2). is graphical notation is particularly

useful when displaying nested structures* .

i

d1, . . . , dn m1, . . . ,mk

c1
...
cl

Figure 5.2: A  with no refereces. Note that the references field is missing at the bottom. For the
remaining elements, the conditions of fig. 5.1 apply.

* If one imagines the  tuple as a physical structure, the analogy of a labelled chest of drawers comes tomind; the id being

the label, the four remaining elements being drawers or slots one has to fill. is terminology is commonwithin theN

working group and we shall adopt it here, using label interchangeably with id and speaking of the references drawer/slot, the

conditions drawer/slot, etc.
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5.3 Two roles for s

e  was devised, on a lower lever, with the representation of sentence meaning in mind. e

formalisation of each sentence is stored a single  or an operator-bound pair of s, and an up-

dated accessibility relation guarantees that discourse referent resolution works correctly across 

boundaries (see section 5.6). In order to accommodate the proof structure and semantic bracket-

ing we spoke of in the requirements list at the beginning of this chapter as well, the early dras of

the N codebase used an additional structure to represent the nested composition of proofs

(listing 5.1).

1 proof(
2 theorem(goal(...)
3 body(
4 ...,
5 lemma(goal(...)
6 body(...)),
7 ...)))

Listing 5.1: Initial dra of a proof representation in pseudo-Prolog notation. is one shows a proof
consisting of a single theorem with a nested lemma. Ellipses represent sequences of discrete sentence
s.

To avoid the overhead caused by dealing with two different structures, and thus having to write

two different parsers—one for the proof structure and one for the s representing sentences, we later

decided to abandon this approach in favour of re-using a special case of s with pre-defined ids,

empty discourse referents and mathematical referents slots. e “contents” of a logical proof section

could be represented in a simple manner by including them in the conditions slot of the special-case

 representing that section. Due to the box-like nature of s, this approach is feasible and has so

far proved to be sufficient. We shall refer to these special-case s as composition s to be able to

differentiate them from sentence s.

e predefined ids for composition s begin with the type of the sub-structure in question,

followed by an underscore and a running integer for unique identfication. us, a  which repre-

sents a whole proof has an id of the form proof_n, a  containing a theorem—an id like theorem_n,

etc., where n is an unique integer. More details on ids will be provided in section 5.5.
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 and sub-

So far we used the name  when referring to the type of structure we are using. e convention

agreed to by the N working group states that when talking about instances of this structure,

we use the name  only when referring to a complete proof representation, and the name sub-

when referring to any structurewithin that top-level . We shall, however, retain the namewhen

describing the formal properties of the structure and come back to this distinction when discussing

the construction mechanisms in chapter 6.

5.4 Formal Definition

For the following definition, let x1, . . . , xn be discourse referents, let y1, . . . , ym be mathemati-

cal referents, let γ1, . . . , γk be conditions, let R be a relation symbol of arity n, let r1, . . . , rp be

references to other parts of the same text or to other texts, and letB andB1 be s.

Definition 5: Proof Representation Structures.

1.

i

x1, . . . , xn y1, . . . , ym

γ1
...

γk

→ r1, . . . , rp

is a .

2. R(x1, . . . , xn) is a condition.

3. B is a condition.

4. ¬B is a condition, representing a negated statement.

5. B := B1 is a condition, representing a definition.

6. B → B1 is a condition, representing an implication or a universal quantification.

7. B ⇒ B1 is a condition, representing an assumption.

8. Nothing else is a  or a condition.
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5.5 e anatomy of a 

Let’s look at the individual constituents of a . In this section wewill confine ourselves to describing

what the building blocks of a  are and reserve a further section to the discussion of how they come

into being.

5.5.1 Id

e id of a  is a token (represented in Prolog by an atom)which uniquely2 identifies this  within

the representation structure. e original motivation behind “labelling” s in this manner is the

ability to pinpoint the exact location in the original proof text which is responsible for the creation of

the sub- in question3.

Each  which was created as a direct consequence of formalising a particular sentence, inher-

its the id of that sentence. e sentence id in turn is composed of the line it is to be found on in the

original text (this is provided by the TEX export plug-in), a dash and a running number repre-

senting the position of the sentence in that line. So the third sentence in the line with id 1.2.3 would

be 1.2.3-3, that of the fourth one would be 1.2.3-4, etc. (fig. 5.3). is covers the basic case, when

a sentence is represented by a single .

For sentences which result in a complex construction of two s connected by an operator, such

as assumptions, definitions and implications, the right hand  inherits the sentence id, and the le

hand  is assigned an artificial id consisting of a type name, an underscore and a running integer,

which is guaranteed to be unique within the entire proof representation. E.g., an assumption in the

third sentence of line 1.2.3 would result in 1.2.3-3 ⇒ consec 1 (for the sake of clarity, we shall

use the framed strings to represent ids only, the rest of the s is le out). In the le hand side 

id consec stands for consequence. Similarly, a definition will generate 1.2.3-3 := definiens 1 .

Implications generate a higher-level  with two sub-s inside. ose have ids which begin with

prefix and matrix for the le hand-side and the right-hand side respectively. e higher-level 

inherits the sentence id, the sub-s get the above prefixes and a running index.
2e id is guaranteed to be unique within a single discourse representation even if this contains multiple proofs. e ids are

not, however, guaranteed to be unique between different runs of the formalisation algorithms if the input text is the same. If, at

some point, the N system is to become distributed and save formalisations for re-use and combination, the sensible

thing to do would be to add augment ids with a generated Universally Unique Identifiers (s).
3Recall that the aim of the N system is to aid authors in writing correct proofs; a major part of this aid resides in

the ability to highlight erroneous parts of the proof when something goes wrong. An error message which references the exact

sentence which caused a linguistic (parsing) or a logical error is inherently more useful than a message which merely states

that such an error occurred.
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1 2 3

1.17.1.3

1.17.1.5

1.17.1.3-3

Figure 5.3: Id composition for statements. Line ids are in rounded triangles, the running number of
sentences within a line in circles. e resulting id for the  representation of the underlined sentence
is shown at the top.

e third type of id is reserved for composition s which denote the higher-level proof struc-

ture. All consist of a prefix and a text-wide unique integer. We have five prefixes to represent the five

types of composition s, their names follow the names of the structures they represent—proof ,

theorem , lemma , goal and body .

5.5.2 Discourse referents

e role of discourse referents in s follows the one we described for s in section 3.1.1.

Discourse referents in the current N implementation are represented by running inte-

gers.

5.5.3 Mathematical referents

Just as discourse referents, sets of mathematical referents are also generated from content sentences

only, and thus only occur in sentence s. ey are a set of all sentence constituents which are

marked up as “math” in the TEX source and all free variables4 contained within these con-

stituents. Consider the sentences in (1):

(1) a. Hence x is an ordinal.

b. Let u ∈ v and v ∈ x.
4Currently, when considering which variables are free and which are bound, only quantification which occurs within for-

mulae is considered. Natural language quantification, such as For all integers x… and ere is no x such that…, is handled on

a different level (see chapter 6).
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c. us there is no x such that ∀u(u ∈ x↔ Ord(u)).

e sentence  for (1a) would contain x as the sole mathematical referent as it is the only part of

the sentence marked-up as “math” in the source file and the variable x is not being quantified over

within that sentence. emathematical referents for the sentence in (1b) will beu ∈ v, u ∈ x, u, v
and x. First, the formulae u ∈ v and v ∈ x are accepted into the slot, the sets of their free variables

(u and v, and v and x respectively) are merged and the result is also added to the slot. For sentence

(1c) the mathematical referents would be x and ∀u(u ∈ x↔ Ord(u)). u is universally bound in

the second formula and is thus omitted from the set of referents.

5.5.4 Conditions

e conditions acceptable in a  depend on the type of expression the  represents. Recall from

the previous chapter that we divide sentences in theN language into distinct groups depend-

ing on their semantic contribution. We have structuring sentences, such as “eorem.”, “Lemma.” and

“Proof.” and what we termed content sentences—simple statements, definitions, implications (which

we re-use to represent natural language quantification) and assumptions. Furthermore, we described

how content sentences are either statements or can be treated as multiple statements which are con-

nected by operators to reflect the nature of the original sentence.

So we can reduce the problem of describing which conditions are allowed in which  type to

two basic cases—s which represent statements and s which represent some sort of structure.

Conditions for s representing statements

For statement s the allowed conditions are of the typeR(x1, . . . , xi)orxm = xn wherexi, . . . , xj,

xm andxn are discourse referents associated with the same  or accessible from it (accessibility will

be discussed at length in section 5.6). Two predefined relationswhich are very common inN

formalisations are the binary math id and the unary holds.

Any  which introduces a new mathematical referent (because it is part of the sentence the

 in question will eventually stand for), automatically associates it with a discourse referent. e

relationship between themathematical referent and the discourse referent is expressed by the math id

relation. Recall example (1a). e variable x would cause an x to be inserted into the drawer of

mathematical referents. Provided there is no accessible discourse referent which can be resolved to

x, a new discourse referent, say 1, will be added to the appropriate drawer. e relation which binds

the two together, mathid(1, x), is then inserted into the conditions drawer. Subsequent encounters
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of x will only add a mathematical referent, as a discourse referent bound to x is already accessible,

making a repetition of the statement for the relation between 1 andx is unnecessary. From this point

on, this is the default behaviour of the construction mechanism until the variablex goes out of scope.

e unary holds is used to denote that a formula encountered within a certain sentence is be-

lieved to be true at this particular point of the proof. It takes a discourse referent as its single param-

eter. Consider sentence (2):

(2) Hence ∀u(u ∈ x↔ Ord(u)).

Aer putting a discourse referent and a mathematical referent into the respective slots, a further

condition is added, stating that the formula is true at this point. e resulting  looks like the one

in fig. 5.4.

1.2.3-1

1 ∀u(u ∈ x↔ Ord(u))

math id(1, ∀u(u ∈ x↔ Ord(u))
holds(1)

Figure 5.4: A partial  demonstrating the use of the holds condition.

Conditions for composition s

For s representing structure, the only allowed conditions are other s and operator-connected

 pairs with some fairly straightforward constraints imposed on the nesting. ose constraints are

not of a technical nature; rather, they mirror the established conventions for writing mathematical

proofs5.

e  which effect high-level (proof, theorem, lemma) structuring are composition s (see

section 5.3) with the following constraints:
5It is common to prove a lemma in the course of a proving a theorem and thus nest the lemma inside the theorem body.

Nesting a theorem inside another theorem, however, is not allowed. Also, when writing a proof,what is to be proven is stated

before the steps showing how it can be proven. Such rules are describes in a number of manuals on mathematical style such as

(Krantz, 1997) and (van Gasteren, 1990).
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1. A proof 6 must subordinate 7 at least one theorem .

2. A proof  may not subordinate another proof .

3. A theorem  contains exactly two conditions in the following order—a goal  and a body .

4. A theorem  cannot subordinate another theorem .

5. A lemma  may be included anywhere in the body  of a theorem .

6. A lemma  contains exactly two conditions in the following order—a goal  and a body .

7. A lemma  may not subordinate a theorem  or another lemma .

8. No other constraints apply.

Pairing statement s

We represent definitions, implications and assumptions by pairing lower-level statement s using

three pre-defined operators—the assignment operator (:=), the single arrow (→) and the double

arrow (⇒). To demonstrate what the pairs look like, consider the following examples:

(3) Define Trans(x) if and only if ∀u∀v(u ∈ v ∧ v ∈ x→ u ∈ x).

(4) x ∈ y and y is an ordinal implies x is an ordinal.

(5) For all x, not x ∈ x.

(6) Assume that¬∃xx ∈ ∅.

(3) is a definition. e corresponding  is shown in fig. 5.5.

(4) is an implication. e corresponding  is shown in fig. 5.6.

We represent natural language quantification as an implication. Both interpretations are dynamically

and statically equivalent, so the re-use of the representation structure is justified. e corresponding

 for (5) is shown in fig. 5.7.

Assumptions such as (6) are represented in a form like the one in fig. 5.8.

Much more details on the form of conditions will be discussed in the next chapter, where we

shall look at the methods of construction for s.
6We shall use the “proof ” to mean a  representing a whole proof text, a “theorem ” to mean a  representing

a theorem structure, etc.
7e definition of the subordinate relation with regard to s will be discussed section 5.6.
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1.2.3-1

1, 2 Trans(x), x

math id(1, Trans(x))
holds(1)
math id(2, x)

:=

definiens 1

3 ∀u∀v(u ∈ v ∧ v ∈ x→ u ∈ x), x

math id(3, ∀u∀v(u ∈ v ∧ v ∈ x→ u ∈ x))
holds(3)

Figure 5.5: A  demonstrating a definition formalisation.

1.2.3-1

1, 2, 3 x ∈ y, x, y

math id(1, x ∈ y)
holds(1)
math id(2, x
math id(3, y)
ordinal(3)

→

definiens 1

x

ordinal(3)

Figure 5.6: A  demonstrating an implication formalisation.

1.2.3-1

1 x

math id(1, x)
→ ¬

matrix 1

2 x ∈ x, x

math id(2, x ∈ x)
holds(2)

Figure 5.7: A  demonstrating natural language quantification.

1.2.3-1

1 ¬∃xx ∈ ∅

math id(1,¬∃xx ∈ ∅)
holds(1)

⇒
consec 1

. . .

Figure 5.8: A  demonstrating an assumption representation.

5.5.5 Textual references

e textual references slot of with each  is a set of ids which refer to other parts of the same proof

or, if the discourse we are formalising contains multiple proofs, to parts of other proofs. ose parts
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are expected to be theorems and lemmas, in order to support the form of themost common references

which occur in informal proofs—“By theorem N” and “By lemma N” where N is usually a running

number of the theorems, resp. lemmas in a text.

It would not be hard to extend the definition of this slot to support the inclusion of references

to named theorems and lemmas, providing those names (and the proofs associated with them) are

available to the proof checking soware we are interfacing with.

5.6 Accessibility in a 

e accessibility relation for s we discussed in section 3.2 applies unaltered to s as well:

Definition 6: A Bi is accessible from a Bj if and only if

1. Bi equalsBj; or

2. Bi subordinatesBj.

e same holds for the subordinates relation:

Definition 7: A Bi subordinates a Bj if and only if

1. Bi immediately subordinatesBj; or

2. there is some B such thatBi subordinatesB andB subordinatesBj.

To accommodate for the fact that we use a sub- per sentence and to handle the richer language of

s, we need to alter the immediately subordinates relation. It is defined as follows:

Definition 8: For the sBi andBj,Bi immediately subordinatesBj if and only if

1. Bi contains the conditionsBj; or

2. Bi contains a condition of the form¬Bj; or

3. B contains the conditionsBi andBj such that index(Bi) < index(Bj) for someB,

where index(Bi) and index(Bj) are the positions ofBi andBj in the list of conditions

ofB; or

4. Bi contains a condition of the formBj := B orB := Bj for some B; or
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5. Bi contains a condition of the formBj → B orB → Bj for some B; or

6. Bi contains a condition of the formBj ⇒ B orB ⇒ Bj for some B; or

7. B contains a condition of the formBi := Bj or for some B; or

8. B contains a condition of the formBi → Bj or for some B; or

9. B contains a condition of the formBi ⇒ Bj or for some B.

e accessibility relation is, just as in , useful only insofar as it poses constraints on the list of

available discourse referents available for resolution.
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C 

C 

So far we have described the language and expression types of N proofs and the formal

structurewewant to use to represent them. What remains to be defined are the rules of theN

processingmodel, i.e. themethods for constructing formal representations from sentences and entire

discourses.

In the chapter on  we mentioned that there exist a number of strategies of building s.

Because the Proof Representation Structure is a rather straightforward extension of the , a gener-

ation algorithm for s can reuse these methods provided the necessary modifications are made to

support the richer  language and the novel accessibility relation for discourse referents.

For the implementation of the N system we choose a functional style of construction,

similar to that of λ-, as it remains close to the notion of sentences as functions from s to

s. In order to ensure a more modular architecture, we define the task of constructing a complete

 from a proof representing discourse as a two-layer iterative process. We shall call the two layers

micro-construction and macro-construction.

Micro-construction (“micro” because it operates on the sentence level) is the process of gen-

erating an update function based on the parse tree of a single sentence, considering the previously

processed discourse as context. e update function can perform a number of operations on s,

including shiing the pointer to the currently active sub- and the insertion of new sub-s and

even whole sub- constructions.

Macro-construction (“macro” because it operates on the discourse level) is the process of iter-

atively applying the update functions to a context , yielding a new  which in turn serves as a

context for the generation of a new update function from the next sentence and so on until the list of
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sentences is exhausted.

We shall start by giving a (necessarily crude at this point) description of the construction algo-

rithm (section 6.1), discuss the notion of active  (section 6.2.1) andwhyweneed it, and then turn to

the details of micro-construction (section 6.3) to see how we can build up sub-s from N

language expressions.

6.1 A birds-eye view of the  construction algorithm

1. We start with an empty B0 and a list s1, . . . , sn of sentences.

2. (micro) We parse s1 and, based on type of s1, the parse tree and in the context ofB0, construct an

update function f s1 which takes a  as an argument and yields a richer, modified .

3. (macro) e application of f s1 onB0 yieldsB1.

4. (micro+macro) We construct an update function f s2 from s2 and apply it toB1 which yieldsB2.

5. Applying f sn toBn−1 yieldsBn.

Formally expressed: Bn = f sn(. . . (f s2(f s1(B0))) . . . ), whereBn = Bs1,...,sn is the  for the

complete proof represented by the discourse s1, . . . , sn.

6.2 Preliminaries

Before we look at the construction process in detail we need to discuss some preliminary issues which

directly influence the current N implementation. Because of the natural scoping of proofs,

we need to define the notion of an active sub- and a memoisation mechanism for keeping track of

accessible discourse referents.

6.2.1 Active sub-

Recall that proofs are not flat, but rather hierarchically nested. ismeans that we have to re-construct

a nested structure from a flat list of sentences. Moreover, when processing each subsequent sentence,

we not only have to interpret it in the context of the  we have built up to this point, but also respect

the scope the sentence is nested in within the original proof and incorporate any scope changes the

sentence may introduce. To facility scope management we introduce the notion of an active sub-

. e active sub- is a meta-property of the  which is essential only for the process of 
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construction. Is not needed for the further manipulation of the final  and is therefore silently

discarded before the verification proper.

To manage multi-level nestings, say, several assumptions in succession, we actually implement a

stack of active sub-s. Sentences which introduce a new nested scope level add to the history stack,

e.g. assumptions push the sub- representing their succedent onto the stack. Sentences which

return the scope to a previous level push one or more elements off of the stack, e.g. assumption

closing sentences pop one element, qed-sentence pop all the elements needed so as to return to the

scope of the current lemma or theorem.

6.2.2 Memoising accessible discourse referents

From the definition of accessibility (section 5.6) it is clear that we can take a straightforward declar-

ative approach to the resolution algorithm. is would, however, require “walking” the  tree for

each sentence. is is the approach taken in standard  and it presents no problem there, because

the nesting of sub-structures in s is relatively small (one of the goals of  construction is to

keep the universe of discourse referents in the top level of the  as much as possible). With s

however, the multiple levels of nesting and the fact that we construct at least one sub- per sentence

lead to a very fragmented discourse referent universe so walking the tree for each iteration becomes

impractical.

erefore we employ memoisation, keeping a set of currently accessible discourse referents to-

gether with the objects assigned to them for each sub-. is also enables us to return the set of

discourse referents to a previous state whenwe change the active sub- by popping from the history

stack. As is the case for the active sub- these sets of accessible discourse referent is not needed for

the proof verification and are discarded once the construction process in complete.

Instead of encoding these twometa properties in the  itself we chose to embed them in a richer

structure which includes the . is structure is a triple {B,H,A} whereB is the ,H is the

history stack andA is a list of the per sub- accessible discourse referent and their associations. We

can now update the definition of the construction algorithm—for each formalisation, we are starting

with an empty instance of this richer structure, i.e. consisting of an empty  B0, a history stack

consisting of justB0 and an empty list of accessible discourse referents. Listing 6.1 shows the Prolog

code (save for an omitted portion of error checking) for the main loop of the construction algorithm.

1 discourse_to_prs(Sentences, PRS) :-

2 Initial = id˜proof_1..
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3 drefs˜[]..

4 mrefs˜[]..

5 conds˜[]..

6 rrefs˜[],

7 In = id_stack˜[proof_1]..accessibles˜[]..prs˜Initial,

8 add_sentences(Sentences, In, PRS).

9

10 add_sentences([], In, In).

11 add_sentences([sentence(id(Id), Content)|Rest], In, Out) :-

12 In = accessibles˜Accessibles,

13 phrase(sentence(Id, In, TmpOut), Content),

14 add_sentences(Rest, TmpOut, Out).

Listing 6.1: e main loop of the N  construction algorithm. If you are not familiar with

the tilde and double period notation, have a look at section B.5.

6.3 Micro-construction

e micro-construction algorithm works as follows:

1. Recognise the sentence type according to the templates in our grammar, i.e. is the sentence a defini-

tion, an assumption, etc.

2. Identify the individual sub-statements in the sentence.

3. Iterate over the sub-statements, constructing a temporary sub- for each one.

4. Process the temporary sub-s to a  representing the whole sentence according to the rules as-

sociated with the appropriate template.

5. Create the update function. Broken down procedurally, the update function consists of at least one

of three possible instructions:

(a) Insert a sub- or a complex, operator connected sub- construction into the active sub-!

(b) Update the list of accessible discourse referent associations!

(c) Update the history stack!
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Let us look at a few introductory examples to illustrate the low-level construction mechanism. Con-

sider the sentences (7). e numbers in brackets represent the ids of the sentences.

(7) a. [1] Observe that u ∈ x and x ∈ y.

b. [2] Hence u ∈ y.

(7b) is an example of the simplest sentences it is possible to express in the N lan-

guage—it consists of a single mathematical expression. We will follow the application of the micro-

construction algorithm to this sentence step by step, assuming an empty context.

1. We start off with an empty  with a fictional id of context.

context

2. e trigger “hence” identifies the sentence as a statement. We match it against the template

statement --> “hence” + sub-statement.

and create a new  to accommodate the semantic contribution of the sub-statement, passing it the

id of the sentence.

2

3. e sub-statement is u ∈ y—a single mathematical expression.

4. We insertu ∈ y into the list ofmathematical referents. We check whether we have already associated

this expression with a discourse referent by looking it up in the list of accessible discourse referent

associations. e list is empty so, naturally, no available association can be found. erefore, we

insert a new discourse referent (say, the integer 1) into the discourse referents drawer and a condition

binding the expression to the referent (using the math id predicate) into the conditions drawer. We

add the association to the previously empty list of associations. Because u ∈ y is an expression (as

opposed to a single variable mention), we also add a holds condition.
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2

1 u ∈ y

math id(1, u ∈ y)
holds(1)

5. We identify the free variables in the sub-statement—u and y. We insert them into the mathematical

referents drawer and perform the same look up of discourse referents, and, finding none, create new

ones and associate them with the variables. e newly created associations are added to the running

list of associations.

2

1, 2, 3 u ∈ y, u, y

math id(1, u ∈ y)
holds(1)

math id(2, u)

math id(3, y)

6. is completes the parsing of the sentence. We have created a new sub- for its contribution and

have a list of discourse referent-mathematical object associations.

7. e rule for statements says that the update function they create contains the following instructions:

(a) Insert the sub- for the statement into the currently active sub-!

(b) Update the associations list!

8. Applying the update function to our initial context  we get the  in fig. 6.1.

Conjuncted sub-statements are represented in a single sub- by first creating a temporary sub-

 for each of the sub-statements and then merging them. One thing to note is that the list of the

accessible discourse referent associations is updated and passed from the one temporary sub- to

the next. Fig. 6.2 shows the representation of sentence 7a.
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context

2

1, 2, 3 u ∈ y, u, y

math id(1, u ∈ y)
holds(1)
math id(2, u)
math id(3, y)

Figure 6.1: e result of inserting “Hence u ∈ y.” into an empty context .

context

2

1, 2, 3, 4, 5 u ∈ x, u, x

math id(1, u ∈ x)
holds(1)
math id(2, u)
math id(3, x)
math id(4, x ∈ y)
holds(4)
math id(5, y)

Figure 6.2: e result of inserting “Observe that u ∈ x and x ∈ y.” into an empty context .

6.4 Macro-Construction

In this section we shall look at the the representation of sample discourses and the construction of

complex sub-s (such as those for definitions, assumptions, etc.) as they are best illustrated in a

discourse context.

We shall refrain from discussing the management of accessible discourse referents as it can eas-

ily be inferred by the careful reader from the definition of accessibility (section 5.6), the remark on

memoisation (section 6.2.2) and the detailed description of the low-level construction mechanism
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above.

For the purpose of brevity we shall introduce a new notation for the graphical  representa-

tions.

All sentences in the N language are defined in terms of sub-statements. We can use

single letter variables to represent sub-statements and “boxed” single letter variables to represent

sub-s. is relation is defined as follows: if a is a sub-statement, then a is the sub- which

represents a single statement which consists only of a.

We shall use the letters a, b, c, d and e to signify sub-statements.

6.4.1 Statements

Each statement contributes a single sub- to the currently active sub-. us, upon encountering

a statement a, we include a at the bottom of the active . For an initially empty  this means

a

For a  already containing the statement a— a —adding the statement b results in

a

b

6.4.2 Assumptions

Assumptions introduce a new sub- pair connected by the⇒ operator. e le-hand side sub-

 contains the sub-statement of the assumption, the right-hand side one is initially empty. Each

assumption opens its own new scope and thus forces all following sentences to contribute to the right-

hand side of the implication until an assumption closing sentence is encountered, i.e. adding an

assumption pushes the right-hand sub- onto the history stack. e artificially added right-hand

sub- (artificial because it does not stem from a complete sentence) is assigned an id of the form

consec plus a running integer. e bare-bones example of a single assumption Let a. results in

a ⇒

e discourse Let a. b. results in

a ⇒ b
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A more complex example: d. Let a. b. c.

d

a ⇒
b

c

6.4.3 Assumption closing sentences

Assumption closing sentences terminate the scope of the currently active assumption by popping its

”consequence” sub- off of the history stack. As assumptions and assumption closing sentences are

symmetrically nested, this would also be the last “consequence” box which is still open. e state-

ment constituent of the assumption closing sentence is then added aer the assumption sub-. e

following shows the representation of the discourse Let a. b. c. us d.

a ⇒
b

c

d

6.4.4 Definitions

A definition introduces a new definition sub- with the id of the sentence containing the definition

which is then immediately closed. is sub- contains a single condition consisting of two sub-s

connected by the := operator—one for the definiendum and one for the definiens. ey receive ids

of the form definiendum plus a running integer and definiens plus a running integer respectively.

e le-hand side sub- contains the first sub-statement in the definition, the right-hand side—the

second one. e following shows the representation of the discourseDefine a iff b. c.
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a := b

c

6.4.5 Natural language implications

Natural language implications introduce a new sub- which inherits the id of the sentence. is

contains a single pair of sub-s connected by the→ operator. e le-hand side sub- receives

an id of the form antecedent plus a running integer, the right-hand sub-—an id of the form

succedent plus a running integer.

e following shows the representation of the sentence a implies b.

a → b

is concludes our discussion on the construction mechanism for s.
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C 

C

In this work we described one possible method of generating a formal representation from infor-

mal mathematical discourse for the N project. We began by introducing N and

clearly stating its goals as a motivation for our research. en we looked at mathematical proofs, giv-

ing a brief overview of the evolution of mathematical reasoning and comparing formal and informal

proofs. We also described the implications that formal and informal methods in mathematics have

on the language, readability and the process of verification of the written manifestation of the prov-

ing process—the mathematical text as a vehicle for the communication of proofs. We proposed the

introduction of a controlled language with well-defined semantics and a novel method of formalisa-

tion as a means of capturing proofs in form that is both human and machine readable and therefore

verifiable.

We introduced the N controlled language, describing its syntax. We looked at an estab-

lished theory for the generation of formal representation of narrative natural language text—Discourse

Representation eory ()—and the basic data structure it provides—the Discourse Representa-

tion Structure (). e  provides a well-defined semantics for representing natural language

discourse, yet it fails to capture many vital properties specific to mathematical discourse—the inher-

ent hierarchical structuring, the sequentiality of propositions, the reuse of variables and the references

to other parts of the proof or to other proof texts.

We proposed an extension of the , designed specifically to capture those properties—the

Proof Representation Structure (). We defined the language of s and demonstrated its abil-

ity to store all of the properties outlined above. In the last chapter, we looked at the algorithm of

construction of s from mathematical discourse, describing a novel two-phase iterative process of
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generation.

e practical part of this work included the development of a system capable of preprocessing

mathematical text in an  format, tokenising it, and generating its  representation. e system

implementation was done in Prolog.

7.1 Possible improvements

e N system is still in its early stages of development. Certain immaturities leave room for

improvement.

e N system is intended to be embedded in the TEX editor and invoked on text

within the editor window. e write-test loop is admittedly a clumsy way of ensuring correctness. A

more elegant way of handling this would be the extension of TEX to support smart look-ahead

editing, by giving hints to users as to which expressions are allowed in each context, much like the

 editor does (Schwitter & Tilbrook, 2007).

e grammar of the N language is currently extremely simple, providing coverage for

only a minimal corpus. It should clearly be extended to support more expression types and a richer

lexicon.

e main shortcoming of the N grammar, however, is that it does not parse mathe-

matical expressions beyond the determination of their free variables. is results in different s for

expressions written in a different manner, but expressing the same meaning (e.g. the sentence For all

x, x < succ(x) will be represented differently than ∀xx < succ(x)). We currently rely on the

interface to the proof checker to resolve those to an identical structure.

Also concerning the parsing of mathematical expressions: the names of variables, operators and

predicates are hardwired in the lexicon, there is currently no way to determine them heuristically.

Possible methods are described in (Zinn, 2004a).

On the implementation side, one evident drawback is the management of accessible discourse

referents—our memoisation approach leads to duplication, as we keep the set of accessible discourse

referents per sub-. We use more memory for the sake of speed and ease of management. One

possible way of solving this would be the use difference structures.
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A A

T   

1 <text> ::= [<open-assumption>]*, [<definition>]*, [<proof>]*;

2

3 <proof> ::= "theorem.",

4 [<free-assumption>]*,

5 [<definition>]*,

6 [statement]+,

7 "proof.",

8 [<close-dassumption> | statement | <lemma>]+,

9 "qed.";

10

11 <lemma> ::= "lemma.",

12 [<assumption>]*,

13 [<definition>]*,

14 [statement]+,

15 "proof.",

16 [<close-dassumption> | statement]+,

17 "qed.";

18

19 <open-assumption> ::= <assumption>;

20

21 <closed-assumption> ::= <assumption>,

22 [statement]*,
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23 <assumption-close>;

24

25 <definition> ::= "define",

26 statement,

27 ["iff" | "if and only if"],

28 statement.

29

30 <assumption> ::= [ "assume that" |

31 "assume for a contradiction that" |

32 "let" |

33 "consider" ],

34 statement;

35

36 <assumption-close> ::= "thus",

37 statement;

Listing A.1: e expected structure of proofs in the N language in .
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A B

I

As part of my participation in the N project I developed a sample implementation of the

 generation algorithms which was successfully tested on the available corpus. e implementa-

tion consists of a pre-processor for the N  format (described in section B.2), a texmacs

module responsible for the conversion of  data into a Prolog data structure (sec. B.3), a prs

module which provides a framework for working with s and a -to- converter to aid the

visualisation of s. Refer to fig. B.1 for a schematic representation of the N implementa-

tion architecture. I will discuss each of the different data states and the modules responsible for their

transformation in the following sections. To illustrate the transformations, I will use a small portion

of text as an example throughout. e text consists of the first two assumptions of the proof of J

 N’s eory of Ordinals, as written up by Peter Koepke and later revised by Jip Veldman.

e sample text reads:

(8) Assume that¬∃xx ∈ ∅.
Assume that for all x, not x ∈ x.

B.1 e input document format

e TeXmacs internal format is similar in structure to a tree-like mark-up format such as  or

 and is saved as a plain text ASCII encoded file.

1 <\quotation>

2 Assume that <with|mode|math|\<neg\>\<exists\>x x\<in\>\<emptyset\>>.
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TeXmacs

Naproche xml

simpli,ed xml

numbered sentences

prs

html display in 
a web browser

fol

proof checker

TeXmacs-to-xml 

pre-processor

texmacs module

prs module

prs display

Figure B.1: e architecture of the N implementation. Bubbles denote different data states,
arrows denote transformations. Arrow labels show the piece of code responsible for the transformation.
Solid arrows stand formodules implemented by the author, dashed arrows—for thework of other project
collaborators.
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3 Assume that for all <with|mode|math|x>, not <with|mode|math|x\<in\>x>.

4 </quotation>

Listing B.1: An example of the TeXmacs internal format

Please note that all mathematical symbols are encoded as elements; thus∈, ∃ and ∅ are respectively

represented by \<in\>, \<exists\> and \<emptyset\>.

Michael Klein has written a Scheme plug-in for TeXmacs which converts this internal format

into well formed . Listing B.2 shows the result of the conversion.

1 <quotation id="1.1.9">

2 <tm-par id="1.1.9.1">

3 <concat id="1.1.9.1.1">

4 <text id="1.1.9.1.1.1">Assume that </text>

5 <math xmlns="http://www.w3.org/1998/Math/MathML" id="1.1.9.1.1.3">

6 <mtext id="1.1.9.1.1.3"><neg id="1.1.9.1.1.3#0"/><exists id="1.1.9.1.1.3#1"/>

7 x x<in id="1.1.9.1.1.3#4"/><emptyset id="1.1.9.1.1.3#5"/></mtext>

8 </math>

9 <text id="1.1.9.1.1.5">.</text>

10 </concat>

11 <concat id="1.1.9.1.3">

12 <text id="1.1.9.1.3.1">Assume that for all </text>

13 <math xmlns="http://www.w3.org/1998/Math/MathML" id="1.1.9.1.3.3">

14 <mtext id="1.1.9.1.3.3">x</mtext>

15 </math>

16 <text id="1.1.9.1.3.5">, not </text>

17 <math xmlns="http://www.w3.org/1998/Math/MathML" id="1.1.9.1.3.7">

18 <mtext id="1.1.9.1.3.7">x<in id="1.1.9.1.3.7#1"/>x</mtext>

19 </math>

20 <text id="1.1.9.1.3.9">.</text>

21 </concat>

22 </tm-par>

23 </quotation>

Listing B.2: e TeXmacs  export format
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B.2 e pre-processor

e pre-processor is a Ruby1 script which takes the path of a file in the TeXmacs  export format

as an argument, transforms the  tree and writes the result to . ree kinds of transfor-

mations are performed:

— Nested math/mtext elements are converted to math elements.

— Namespace declarations are stripped from math elements2.

— Named elements within math elements are converted to their Unicode equivalents and encoded as

4-bit hexadecimal entities. e conversion is made according to a separate, manually maintained

conversion table.

I have also provided a driver script which sources the pre-processor, performs the necessary

transformations, writes the result to a temporary file and invokes the Prolog program. is is the

script which the TeXmacs plug-in is calling.

e pre-processor utilises the Hpricot3 gem for Xpath searching and  tree transformations.

1 <quotation id="1.1.9">

2 <tm-par id="1.1.9.1">

3 <concat id="1.1.9.1.1">

4 <text id="1.1.9.1.1.1">Assume that </text>

5 <math>&#xac;&#x2203;xx&#x2208;&#x2205;</math>

6 <text id="1.1.9.1.1.5">.</text>

7 </concat>

8 <concat id="1.1.9.1.3">

9 <text id="1.1.9.1.3.1">Assume that for all </text>

10 <math>x</math>

11 <text id="1.1.9.1.3.5">, not </text>

12 <math>x&#x2208;x</math>

13 <text id="1.1.9.1.3.9">.</text>

14 </concat>

15 </tm-par>

1Ruby <http://www.ruby-lang.org> is an object-oriented scripting language.
2is is currently desirable as the namespaces of math elements in the TeXmacs export format declare the contents of those

elements to be valid MathML. is is, however, unfortunately not the case.
3Hpricot <http://code.whytheluckystiff.net/hpricot/> is an / processing library for Ruby.
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16 </quotation>

Listing B.3: e  document aer pre-processing

B.3 e texmacs module

e texmacs module serves as an interface between documents in the transformed (simplified) 

format (described in section B.2) and the internal format expected by the prs module. It exports the

single predicate texmacs_sentences/2 which is defined as follows:

texmacs sentences(File, Sentences)←

Sentences is the list of significant sentences contained in the document saved under

the path File.

Internally, the texmacsmodule provides code for a number of steps to facilitate the conversion. First,

the document at path File is read and converted to a complex Prolog term using the  process-

ing module described in section B.6. Significant portions are selected4 and their contents tokenised

and split into sentences. e splitting algorithm is at present rudimentary, splitting sentences at the

periond (character code 46). Sentences are also associated with an unique id which allows for a sen-

tence to be traced to an exact location in the source document. e id consists of the id of the line on

which the sentence begins, a dash, and a running index. us, the sentence with id 1.2.3.4-5 is the

fih running sentence in the line with id 1.2.3.4.

1 [ sentence(id('1.1.9.1.1-1'), [assume, that, math("\u0XAC\u2203xx\u2208\u2205")]),

2 sentence(id('1.1.9.1.3-1'), [assume, that, for, all, math("x"), (','), not, math("x\u2208x")]) ]

Listing B.4: e example sentences transformed to Prolog terms. Symbols are represented as Unicode

strings, mathematical terms and formulas are wrapped in math predicates.

4Authors of N documents are expected to explicitly mark the portions of the text they wish to be checked. is

provides a simple mechanism for separating the actual proof text from meta information, such as comments or clarifying

remarks, which, though informative for human readers, are of no significance to the prover. At present, authors need to place

all significant text in the TeXmacs quotation environment. It is planned, however, that the N plug-in for TeXmacs

also provide a designated naproche environment. is would require minor changes to the texmacs module.
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B.4 e prs module

e prs module provides a framework for working with s. is includes common operations

on these structures like constructing, modifying, searching and displaying. Included with the prs

module is also an example grammar in  format which is tailored to the available examples. e

main predicate this module exports in discourse_to_prs/2:

discourse to prs(Discourse, PRS)←

Discourse is a list of sentences as provided by the texmacsmodule; parsing them results

in a  which is unified with PRS. e predicate succeeds if all sentences inDiscourse

can be successfully parsed.

discourse_to_prs/2 sets up an empty  and traverses the list of sentences provided as its first

parameter, adding them sequentially to the . Should a sentence fail to parse correctly according

to the provided grammar, the parsing is halted and a diagnostic error message including the id of the

faulty sentence is written to .

B.5  representation

roughout the current N implementation s are represented as feature-value (f-v) struc-

tures with the following features (text in parentheses shows the actual feature name as used in the

code): id (id), discourse referents (drefs), mathematical references (mrefs), conditions (conds) and

text references (rrefs). Prolog does not provide a built-in mechanism for f-v structures, so I used

Michael Covington’s  (Covington, 1994) extension. It extends Prolog with a syntax and mech-

anism for encoding f-v structures. In , features and values are separated by a tilde (˜), and f-v

pairs are joined by a double period (..). An empty  in  looks like this:

1 id˜_.. % an uninstantiated id

2 drefs˜[].. % an empty list of discourse referents

3 mrefs˜[].. % an empty list of mathematical references

4 conds˜[].. % an empty list of conditions

5 rrefs˜[] % an empty list of text referents

Listing B.5: An empty  in  syntax.
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Nested sub-s are included in the list of conditions. For performance reasons the list of conditions

is built-up backwards (new conditions are added to the front of the list). Any code which processes

the s further should thus reverse the list to restore the correct order.

B.6 e xml module

e xml.pl module used for reading  encoded proof texts was written by John Fletcher and re-

leased in the public domain5. I made some minor modifications to ensure compatibility with recent

versions of SWI-Prolog. A version of xml.pl is included in the N codebase.

5e most recent version of xml.pl, along with the licence under which it is released, can be found at http://www.

zen37763.zen.co.uk/xml.pl.html.
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D G  B-

 

 P N

N ist ein Forschungsprojekt, das von Prof. Dr. Bernhard Schröder (ehemals Institut für

Kommunikationsforschung der Universität Bonn, IfK) und Prof. Dr. Peter Koepke (Mathematisches

Institut der Universität Bonn) ins Leben gerufen wurde. Das Projekt hat zwei zentrale Ziele—eine

kontrollierte Sprache zu entwickeln, die das Aufschreiben mathematischer Beweise erlaubt, und ein

System bereitzustellen, das die automatisierte Überprüfung der Korrektheit von Beweisen in dieser

Sprache ermöglicht. Das System ist als Hilfe sowohl für Autoren gedacht, die ihre eigene Arbeit über-

prüfen wollen bevor sie eingereicht wird, als auch für Rezensenten, die ihnen zur Bewertung gere-

ichte Arbeiten überprüfen müssen. Die prototypischen Benutzer des Systems sind Studenten der

Mathematik und verwandte Disziplinen wie Physik und Informatik, die mathematische Beweise als

Hausarbeiten einreichen müssen, und Professoren und Dozenten, die große Mengen solcher Beweise

bewerten müssen.

Aus der Sicht des Benutzers ist das System einfach. Es kann in den Editor TEX integriert

werden und ermöglicht dieÜberprüfung des sich imEditorfenster befindendenmathematischenText

per Tastendruck. Die Benutzerinteraktion ist minimal—nach einem Aufruf des Systems bekommt

der Benutzer die Meldung “Proof accepted.” (“Beweis angenommen.”) oder eine Fehlermeldung mit

dem Hinweis auf den Fehler, der eine erfolgreiche Überprüfung verhindert hat. Unter der Haube

ist das System jedoch komplex und mehrschichtig—der Text im Editorfenster wird mehreren For-

mattransformationen ausgesetzt, bevor er dann in eine formale Struktur überführt wird, die ihrer-

seits einem externen automatischen Beweisprüfer übergeben wird. Diese Arbeit beschreibt die Art
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dieser Transformationen und insbesondere die Methoden der Erstellung formaler Repräsentationen

aus (pseudo-)informellem mathematischen Diskurs.

Mathematical Proof (Mathematischer Beweis) Kapitel 2 ist demmathematischenBeweis gewidmet.

Wir verfolgen die Evolution der mathematischen Beweisführung—von der Entwicklung der axioma-

tischen Methode und den ersten logischen Inferenzregeln, den Syllogismen, von Aristoteles bis hin

zur den Versuchen von Frege, Russel und Hilbert, einen einheitliches, rein logisches Fundament

für die Mathematik zu finden. Die argumentativen und die formalen Methoden der Beweisführung

führen zu zwei verschiedenen Auffassungen des mathematischen Beweises—der Beweis als überzeu-

gendes Argument für andere Mathematiker (informaler Beweis) und der Beweis als eine in sich

geschlossene Kette von logischen Schritten, die in einem formalen System ausgeführt wird (formaler

Beweis).

Informale Beweise werden mit Hilfe einer nicht strickt festgehaltenen Sprache, einer Mischung aus

natürlicher und symbolischer Sprache, ausgedrückt. Sie beinhalten Hinweise und Erklärungen, die

Hintergrundwissen und Erfahrung seitens des Lesers voraussetzen. Somit ist es nur möglich, sie

durch Interpretation zu auf ihre Korrektheit hin zu verifizieren. Die Verifizierung läu als sozialer

Prozess des Peer-Review ab, eine maschinelle Verifizierung ist nicht möglich.

Formale Beweise werden vollständig in einem formalen Systemdurchgeführt, das eine wohldefinierte

symbolische Sprache, eine Menge an grundlegenden Aussagen (Axiomen) und eine Menge an lo-

gischen Schlußfolgerungsregeln bereitstellt. Formale Beweise sind deshalb mechanisch, durch eine

automatische Überprüfung ausschließlich auf syntaktischer Ebene, verifizierbar.

N Beweise weisen eine Mischung aus Eigenschaen sowohl formaler als auch informaler

Beweise auf. Sie werden in einer formalen Sprache geschrieben, die jedoch viele Ausdrücke und

Sprachkonstruktionen beinhaltet, die der informalen mathematischen Praxis entliehen sind. Somit

sind sie sowohl von Menschen gut lesbar, als auch automatisch verifizierbar.

Tabelle Z.1 bietet einen Vergleich der verschiedenen Beweistypen in Hinsicht auf ihre Sprache, Les-

barkeit und Methoden der Verifizierung.

e Language of Mathematics (Die Sprache der Mathematik) Kapitel 3 bietet einenÜberblick über

die Sprache der mathematischen Texte. Mathematische Texte sind immer informal, halbstarr struk-

turiert und sind in einer hybriden Sprache—einer Mischung aus ethnischer, natürlicher Sprache und

einer universellen symbolischen Sprache—geschrieben. Man unterscheidet zwischenmehreren Satz-

typen—Aussagen, Annahmen, Definitionen u.s.w—die eigenen Einfluss auf den Verlauf des Beweises
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Formal Informal N

Sprache formal, symbolisch,
festgehalten

Mischung aus natürlicher
und symbolischer, nicht
festgehalten

Mischung aus natürlicher
und symbolischer, festge-
halten

Lesbarkeit kaum/nicht lesbar lesbar lesbar

Verifikation mechanische, auf
syntaktischer Ebene,
Interpretation nicht
erforderlich

Peer-Review, sozialer
Prozess

mechanische und durch
sozialea Prozesse

Table Z.1: Vergleichende Tabelle der Sprache, Lesbarkeit fürMenschen undMethoden derVerifizierung
für formale, informale und N Beweise.

ausüben. Z.B. Annahmen definieren einen neuen Skopus für Variablen, Definitionen führen neue

Sprachkonstrukte ein, etc.

e N language (Die N Sprache) Kapitel 4 definiert die Sprache, in derN

Beweise geschrieben werden. Sie ist eine kontrollierte Sprache mit festgehaltener Semantik, die aus

einer ausgewähltenMenge an natürlichsprachlichen Ausdrücken aus dermathematischen Praxis und

einer symbolischen Sprache für mathematische Ausdrücke besteht. In der aktuellen N Im-

plementation ist die Sprache eineTemplate-Sprache, die Satztypenwerden anTriggerphrasen erkannt,

z.B. “Assume thatx . . . ” oder “Letx . . . ” für Annahmen, “DefineOrd(x) if and only if . . . ” für Defini-

tionen. Die Templates sind auf der Idee von sub-Statements aufgebaut—einzelne bedeutungstragende

Ausdrücke, die in den Templates eingebunden werden. Die Verarbeitungsregeln der N

Grammatik setzen die semantischen Beiträge der sub-Statements in Beziehung zu einander.

Discourse Representation eory (Diskursrepräsentationstheorie) Im 5. Kapitel haben wir einen

Überblick der Diskursrepräsentationstheorie () gescha, als inspirierender Startpunkt für die

Entwicklung des N Systems. DRT stellt einen Ansatz für die Formalisierung von natürlich-

sprachlichenDiskursendar und ist somit einer der angestrebtenGrundfunktionalitäten desN

nicht unähnlich. DieGrunddatenstruktur der ist dieDiscourseRepresentation Structure ()—ein

2-Tupel, bestehend aus einer Menge Diskursreferenten und einer Menge Diskursbedingungen. en

werden durch die iterative Verarbeitung eines Diskurses, repräsentiert als endliche Liste von Sätzen,

aufgebaut. Die  Definition ist vom Auauverfahren unabhängig—die zwei etablierten Verfahren

sind reading und Konstruktion durch λ-Ausdrücke.
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Proof Representation Structures (Beweisrepräsentationsstrukturen) Kapiteln 6 und 7 stellen den

Kern dieser Arbeit dar. Die Proof Representation Structure () ist eine speziell für das N

System entwickelte Datenstruktur. Sie basiert auf der , besitzt jedoch eine reichere Semantik und

Sprache. Die  ist definiert, um die Repräsentation wichtiger Eigenschaen von mathematischen

Beweisen zu ermöglichen. Die wichtigsten davon sind:

Beweistruktur MathematischeBeweise sindhierarchisch geschachtelte Strukturen imGegen-

satz zu erzählerischen Texten. Diese Hierarchie muss in der formalen Beweisrepräsen-

tation wiederzufinden sein.

Reihenfolge Die Reihenfolge der Sätze muss in der Repräsentation beibehalten werden.

Der semantischeBeitrag einzelner Sätzemuss auch einzeln festgehaltenwerden, Satzrepräsen-

tationen dürfen nicht veinigt werden.

Wiederverwedung von Variablennamen Der hierarchische Auau mathematischer Be-

weise führt dazu dass Variablennamen, z.B. x, y, z in Laufe des Beweises auf ver-

schiedenen Variablen mit verschiedenen Existenzbedingugen referieren.

Definitionen Definitionen verändern die Sprache in der ein Beweis geschrieben wird, in-

dem sie neue Sprachkonstrukte einführen.

Intra- und Intertextuelle Referenzen Mathematiker verwenden in ihrenBeweisen obere-

its bewiesene Sätze und weisen auf deren Beweis hin.

Lokalisation Jeder Satzmuss eindeutig identifiziert werden können, damit das Systemdem

Benutzer möglichst akkurate Fehlermeldung präsentieren kann.

Um diese Eigenschaen festhalten zu können erweitert die Definition der  die definition der

 um 3 zusätzliche Merkmale—die id (die eine eindeutige Identifikation von Sätzrepräsentatio-

nen erlaubt), die Liste der mathematischen Referenten (eine Liste der mathematischen Objekte über

die gesprochen wird) und die Liste der Referenzen (eine Liste der Referenzen auf andere Beweise). S.g.

Container-en (mit leeren Merkmalen, bis auf die id) dienen der Strukturierung der Beweise.

Der Auau von  ist ein iterativer Prozess, der auf zwei Ebenen verläu. Die Mikrokonstruk-

tion (auf Satzebene) ist der Prozess der Generierung von Update Functionen auf der Basis des Parse-

baums der Satzes und des Kontext der bis dahin verarbeiteten Sätze. Die Makrokonstruktion (auf der

Diskursebene) ist der Prozess der Anwendung der Update Funktion für jeden Satz auf die partielle

, um eine neue, reichere  zu ergeben. Diese neue  wird dann in der nächsten Iteration als

Kontext für die Mikrokonstruktion verwendet usw.
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In dem letztenKapitel weisenwir aufmöglichRichtungen für die zukünige EntwiklungdesN

Projekts.
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